Additive manufacturing or 3D printing gained a widespread popularity in recent years due to the ability of the method to manufacture components with high geometrical complexity. The most cost-effective process to manufacture plastic parts using 3D printing is the fused deposition modeling (FDM) method. Process parameters as the infill rates but also the printed pattern of different layers and their orientation have a significant influence on the mechanical properties of specimens fabricated by FDM. Controlling the process parameters is possible to generate materials with variable mechanical proprieties. The paper presents the analysis of a beam with constant cross-section but variable stiffness. Variable stiffness is achieved by changes in different cross-sections of the beam of the infill rates of the printing process. The mechanical behavior consisting of force-displacements curves is analyzed by three-point bending tests of variable stiffness samples and comparison with similar beams having constant infill rate. The results consist of E-modulus variation, maximum force and deflection curve. Analytical calculations and finite element analyses are employed to predict the mechanical behavior of the specimens printed with variable infill rate. The obtained results proved the concept of equal stress-beam with constant cross-section obtained by 3D printing process parameters variation.
The paper proposes a novel method of numerical simulation of the fused deposition molding 3Dprinted parts. The single filaments are modeled by a script using the G-code of the 3D printer. Based on experimental evaluation of the cross-sectional geometry of a printed tensile specimen, the connection between the filaments is determined and the flattening effect of the filaments can be counted. Finite element (FE) simulations considering different element lengths were validated by experimental tests. The methodology allows, on one hand, numerical estimation of the true cross-sectional area of a specimen and correction of the experimental stress-strain curves and, on the other hand, accurate determination of the E-modulus of a printed tensile specimen with different deposition densities (20%, 40%, 60%, 80% and 100% infill rate). If the right method to connect the single filaments is established and validated for a 3D printer, the mechanical properties of the 3D specimens can be predicted without physical tensile test, only using FE method, which will allow the designers to print out the parts with variable infill rate and tunable stiffness only after the FE result are suitable for their needs, saving considerably materials and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.