Cold atmospheric pressure plasma (CAPP) has been proposed as a novel method for anticancer therapy. This field gained much interest in the last decade, with biological applications such as wound healing, bacterial sterilization, and cancer treatment. However, the mechanism at the basis of plasma-cell interaction remains unclear. Here, we studied the effect of helium (He) gas CAPP on oral squamous cell carcinoma (OSCC) in vitro. CAPP treatment was performed under different treatment time conditions: 1, 3, and 5 min. Results showed that CAPP treatment induces cell death in OSCC cells in a dose-dependent manner. He-CAPP also induces cell death and G1 cell cycle arrest associated with the ATM/P53 pathway. Furthermore, CAPP activates the mitochondria-mediated apoptosis pathway by enhancing Bax expression and of the Bcl-2 protein suppression. Hydrogen peroxide (H 2 O 2 ) generation increased immediately after He plasma treatment but reached basal level after 3 h. Further studies showed that CAPP increases intracellular ROS and RNS and reverts after a long period of plasma treatment. Taken together, these results indicated that He-CAPP induces cell death and cell cycle arrest and activates mitochondria-mediated apoptosis by increasing intracellular reactive oxygen and nitrogen species (ROS and RNS) in OSCC cells. Our study provides deep understanding of He-CAPP's effect on OSCC cells. We suggest that CAPP could be a potential therapeutic and clinical research tool for oral cancer treatment.
Salmonella-contaminated foods, especially poultry-derived foods (eggs, chicken meat), are the major source of salmonellosis. Not only in the European Union (EU), but also in the United States, Japan, and other countries, has salmonellosis been an issue of concern for food safety control agencies. In 2005, EU regulation 1003/2005 set a target for the control and reduction of five target Salmonella enterica serovars-S. Typhimurium, S. Enteritidis, S. Infantis, S. Hadar, and S. Virchow-in breeding flocks. Thus, a simple biochip for the rapid detection of any of these five Salmonella serovars in poultry products may be required. The objectives of this study were to design S. Virchow-specific primers and to develop a biochip for the simultaneous identification of all or any of these five Salmonella serovars in poultry and poultry products. Experimentally, we designed novel polymerase chain reaction (PCR) primers for the specific detection of S. Virchow, S. Infantis, and S. Hadar. The specificity of all these primers and two known primer sets for S. Typhimurium and S. Enteritidis was then confirmed under the same PCR conditions using 57 target strains and 112 nontarget Salmonella strains as well as 103 non-Salmonella strains. Following multiplex PCR, strains of any of these five Salmonella serovars could be detected by a chromogenic biochip deployed with DNA probes specific to these five Salmonella serovars. In comparison with the multiplex PCR methods, the biochip assay could improve the detection limit of each of the Salmonella serovars from N×10 cfu/mL to N×10 cfu/mL sample in either the pure culture or the chicken meat samples. With an 8-hour enrichment step, the detection limit could reach up to N×10 cfu/mL.
Cold atmospheric pressure plasma (CAPP) techniques have developed rapidly durthat is comprised of reactive atoms, molecules, ions, and radicals. CAPP generates various types of highly reactive oxygen and nitrogen species at room temperature that play an important part in biological applications including cancer therapy. In recent years, CAPP has gained increasingly stood. The aim of this study is to investigate both the mechanism of CAPP on oral squamous cell carcinoma (OSCC) cells as well as plasma-induced radicals. We observe plasma-induced highly reactive species in a plasma plume and cell culture. A cell proliferation assay shows that CAPP in vitro. Western blot analysis shows cleavage of poly (ADP-ribose) polymerase protein after plasma treatment, indicating that CAPP an alternative adjuvant therapeutic tool for the treatment of OSCC.
Trimethylamine oxide (TMAO) originates from trimethylamine (TMA), which is oxidized in the liver by hepatic flavin-containing monooxygenases (FMO3). TMA is produced by its dietary precursors such as choline, carnitine, and phosphatidylcholine by gut microbiota. TMAO attracts attention, identified as a novel and independent risk factor for promoting obesity, atherosclerosis and cardiovascular disease (CVD), chronic kidney disease (CKD), insulin tolerance, and colon cancer. Probiotics have been considered as live microorganisms, providing benefits to their host when they are given in sufficient quantities and administered continuously. The objective of this study is to suggest a method to select potential probiotic strains to reduce the serum concentration of TMAO in mice fed with choline. In this work, we chose three lactobacilli with strong adherence capability, and fed multistrain formula (MF) to the mice challenged with choline. On days 7, 14, and day 28, it was found that the MF-containing L. amylovorus LAM1345, Lpb. plantarum LP1145, and Lim. fermentum LF33 showed a significant reduction in serum TMAO and TMA levels. For the single strains, LP1145 reduced TMAO on days 14 and 28, and strain LAM1345 reduced TMAO significantly on days 7 and day 14. For strain LF1143 from strain LF33, it showed no significant effect on TMAO and TMA. Thus, MF showed the best effect, which may be due to the additive and synergetic effect and the contribution of strain LP1145 and LAM1345. Finally, for the LAM1345 and LP1145 strains, we used molecular identification and typing methods to assure that these two strains are unique strains. The methods used for LAM 1345 were leader peptidase A (lepA) gene analysis and phylogenetic analysis, while for strain LP 1145and other strains of Lpb. plantarum subsp. plantarum sequences were compared using the whole-genome multilocus sequence typing (wgMLST) method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.