To evaluate the intensity modulated radiotherapy (IMRT) quality assurance (QA) results of the multichannel film dosimetry analysis with single scan method by using Gafchromic™ EBT3 (Ashland Inc., Covington, KY, USA) film under 0.35 T magnetic field. Methods Between September 2018 and June 2019, 70 patients were treated with ViewRay MRIdian ® (ViewRay Inc., Mountain View, CA) linear accelerator (Linac). Film dosimetry QA plans were generated for all IMRT treatments. Multichannel film dosimetry for red, green and blue (RGB) channels were compared with treatment planning system (TPS) dose maps by gamma evaluation analysis. Results The mean gamma passing rates of RGB channels are 97.3% ± 2.26%, 96.0% ± 3.27% and 96.2% ± 3.14% for gamma evaluation with 2% DD/2 mm distance to agreement (DTA), respectively. Moreover, the mean gamma passing rates of RGB channels are 99.7% ± 0.41%, 99.6% ± 0.59% and 99.5% ± 0.67% for gamma evaluation with 3% DD/3 mm DTA, respectively. Conclusion The patient specific QA using Gafchromic™ EBT3 film with multichannel film dosimetry seems to be a suitable tool to implement for MR-guided IMRT treatments under 0.35 T magnetic field. Multichannel film dosimetry with Gafchromic™ EBT3 is a consistent QA tool for gamma evaluation of the treatment plans even with 2% DD/2 mm DTA under 0.35 T magnetic field presence.
Lattice Radiotherapy (LRT) is a technique in which heterogeneous doses are delivered to the target so large tumors can have optimal doses of radiation without compromising healthy tissue sparing. To date, case reports and case series documented its application for bulky tumors mainly in the pelvic region. LRT not only provides dosimetric advantages but also promotes tumor control by triggering some radiobiological and immunological pathways. We report two cases of giant liver metastases for whom other treatment options were not suitable. We treated both patients with Magnetic Resonance Image-Guided Radiotherapy (MRgRT) with online adaptive LRT (OALRT) technique. Adaptive plans were generated before each fraction. Tumors were observed to have regressed interfractionally so the location and number of spheres were adapted to tumor size and daily anatomy of the surrounding organs at risk (OAR). Both patients had good treatment compliance without any Grade 3+ side effects. They are both under follow-up and report improvement. By reporting the first application of OALRT by using MRgRT in liver metastases, we show that MRgRT is a promising modality for LRT technique with better target and OAR visualization as well as online adaptive planning before each fraction according to the daily anatomy of the patient.
In this study, we aimed to review the heart and left coronary artery doses over the years in patients who received breast cancer radiotherapy (RT).
Materials and Methods:A total of 436 breast cancer patients of 2 RT centers treated between the years 2010 and 2018 were included. The mean heart doses (HeartDmean-HDM) and left coronary artery mean doses (LDM) were analyzed using nonparametric tests. The conventional RT (CRT) was 50 Gy/2 Gy in 5 weeks, and the hypofractionated RT (HRT) was 40.05 Gy/2.67 Gy in 3 weeks. Boost was applied as 10-16 Gy/2 Gy for CRT and 10 Gy/2.5 Gy for HRT. An equivalent conventional total dose of 2 Gy/fraction (EQD2) was taken into account for HRT.Results: HDM was 107±104 cGy, and LDM was 288±209 cGy for the entire group. HDM was significantly lower in patients with breast-conserving surgery (99±94 cGy) than that in those with mastectomy (128±124 cGy) (p<0.001). Field-in-field intensity-modulated RT technique significantly reduced the doses compared to volumetric applications (104±95 cGy vs 141±38 cGy; p = 0.002). HDM was significantly increased with lymphatic RT (132±58 cGy vs 112±115 cGy; p<0.001). The addition of internal mammary volumes significantly increased HDM (p<0.001). No significant effect of boost was observed (p = 0.96). For both CRT and HRT regimens, HDM values were significantly lower after the year 2014 (right side p<0.001, left side p = 0.01). In the left side CRT, HDM was 1.74 Gy before 2014 and 1.3 Gy after 2014 and 1.0 and 1.19 Gy, respectively, for the right side.
Conclusion:All efforts to reduce the cardiac doses will likely reduce long-term side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.