Reasoned fertilization, which is a major concern for sustainable and efficient agriculture, consists of applying customized fertilizers which requires a very large increase in the number of fertilizer formulae, involving increasing costs due to the multiplication of production batch, of storage areas and of transportation constraints. An alternative solution is given by adopting a Reverse Blending approach, which is a new Blending Problem where inputs are non-pre-existing composite materials that need to be defined in both number and composition, simultaneously with the quantities to be used in the blending process, such as to meet the specifications of a wide variety of outputs, while keeping their number as small as possible. This would replace the production of a large variety of small batches of fertilizers by few large batches of new composite materials whose blending may be performed close to end-users (delayed differentiation), delivering substantial production and logistics cost savings, well in excess of remote blending costs. Reverse Blending presents some analogies with the Pooling Problem which is a two-stage Blending Problem where primary inputs are existing raw materials. An adapted version of this problem may be used to facilitate the design of new composite materials used by Reverse Blending. This paper presents the Reverse Blending approach, whose modelling is based on a quadratic programming formulation, and a large case study to demonstrate its feasibility. Reverse Blending, therefore, may be a disruptive approach to successfully reengineer not only the fertilizer supply chain but any other industry operating in blending contexts to meet a great diversity.
Delayed differentiation, one of the key techniques of mass customization, has proven to be a high-performance strategy in the discrete industry. In the process industry, however, it remains poorly explored, especially when differentiation relates to product composition rather than form. Reverse Blending is a new OR blending problem based on a quadratic formulation, where output requirements are similar to those of classical blending, but here inputs are not preexisting and must be defined simultaneously with their use in the blending process while exactly meeting output requirements. These may then be used to obtain a wide variety of custom fertilizers (outputs) from a small number of Canonical Basis Inputs that can be blended outside the chemical plant, close to the endusers. This would avoid production of a wide variety of small batches of final products through a small number of large batches of intermediate products, resulting in valuable logistical streamlining and substantial cost savings. Accordingly, our paper investigates the potential benefits of implementing Reverse Blending in the fertilizer industry.
La révolution industrielle 4.0 a connu d’importants succès en production discrète (objets…), en retardant la personnalisation dans des unités de production ou d’assemblage. La production continue (granules, liquides…) est l’oubliée de cette révolution, en raison d’une organisation productive en séquence de lots qui rend difficile la production efficiente d’une grande variété de produits. En réponse à ce défi, une nouvelle approche de conception et de fabrication de produits, appelée Reverse Blending et détaillée dans un article d’IJPE, permet de retarder la personnalisation des engrais, dans de petites unités de mélange implémentées à proximité du client final. Elle se fonde sur la recherche de la composition chimique optimale d'un nombre réduit de produits semi-finis dont les combinaisons possibles permettent de satisfaire une très grande diversité de produits finis personnalisés. L’intérêt de cette approche de Chaîne Logistique Intelligente, à la production continue, est montré à travers quatre études.
Despite technological progress and a large amount of research on Industry 4.0, digital transformation remains a complex process that most manufacturers are hesitant to invest in. Interest in digital Kanban, for example, remains low compared with traditional Kanban, which is widely used. This applies to the other card-based production control systems, including CONstant Work-In-Process (CONWIP), which is the focus of this paper. In an industrial context where digitization and Industry 4.0 are the main trends, one may wonder why traditional CONWIP is preferred to digital CONWIP. Following a praxeological approach (i.e., study of practice and instrumentation), this article explores the strengths and weaknesses of the CONWIP practice, in both its paper and electronic versions, while taking into account the human dimension. The aim is to motivate potential CONWIP users to implement it in its digital mode and to show them how a Digital Twin-based solution can overcome the managerial problems that arise with digitization while enabling improved performance. As an illustration, experience feedback from several companies using Digital Twin with CONWIP is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.