Magnetic resonance imaging (MRI) is increasingly used in the diagnosis of Alzheimer's disease (AD) in order to identify abnormalities in the brain. Indeed, cortical atrophy, a powerful biomarker for AD, can be detected using structural MRI (sMRI), but it cannot detect impairment in the integrity of the white matter (WM) preceding cortical atrophy. The early detection of these changes is made possible by the novel MRI modality known as diffusion tensor imaging (DTI). In this study, we integrate DTI and sMRI as complementary imaging modalities for the early detection of AD in order to create an effective computer-assisted diagnosis tool. The fused Bag-of-Features (BoF) with Speeded-Up Robust Features (SURF) and modified AlexNet convolutional neural network (CNN) are utilized to extract local and deep features. This is applied to DTI scalar metrics (fractional anisotropy and diffusivity metric) and segmented gray matter images from T1-weighted MRI images. Then, the classification of local unimodal and deep multimodal features is first performed using support vector machine (SVM) classifiers. Then, the majority voting technique is adopted to predict the final decision from the ensemble SVMs.The study is directed toward the classification of AD versus mild cognitive impairment (MCI) versus cognitively normal (CN) subjects. Our proposed method achieved an accuracy of 98.42% and demonstrated the robustness of multimodality imaging fusion.
Diffusion tensor imaging (DTI) is a new technology in magnetic resonance imaging, which allows us to observe the insightful structure of the human body in vivo and non-invasively. It identifies the microstructure of white matter (WM) connectivity by estimating the movement of water molecules at each voxel. This makes possible the identification of the damage to WM integrity caused by Alzheimer’s disease (AD) at its early stage, called mild cognitive impairment (MCI). Furthermore, the brain’s gray matter (GM) atrophy characterizes the main structural changes in AD, which can be sensitively detected by structural MRI (sMRI) modality. In this research, we further develop a novel multi-modality MRI (DTI and sMRI) fusion strategy to detect WM alterations and GM atrophy in AD patients. The latter is based on a 2- dimensional deep convolutional neural network (CNN) features extractor and a Support Vector Machine (SVM) classifier. The fusion framework consists of merging features extracted from DTI scalar metrics (fractional anisotropy (FA) and mean diffusivity (MD)), and GM using 2D-CNN and feeding them to SVM to classify AD vs. cognitively normal (CN), AD vs. MCI, and MCI vs. CN. Our novel multimodal AD method demonstrates a superior performance with an accuracy of 99.79%, 99.6%, and 97.00% for AD/CN, AD/MCI, and MCI/CN respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.