Magnetic resonance imaging (MRI) is increasingly used in the diagnosis of Alzheimer's disease (AD) in order to identify abnormalities in the brain. Indeed, cortical atrophy, a powerful biomarker for AD, can be detected using structural MRI (sMRI), but it cannot detect impairment in the integrity of the white matter (WM) preceding cortical atrophy. The early detection of these changes is made possible by the novel MRI modality known as diffusion tensor imaging (DTI). In this study, we integrate DTI and sMRI as complementary imaging modalities for the early detection of AD in order to create an effective computer-assisted diagnosis tool. The fused Bag-of-Features (BoF) with Speeded-Up Robust Features (SURF) and modified AlexNet convolutional neural network (CNN) are utilized to extract local and deep features. This is applied to DTI scalar metrics (fractional anisotropy and diffusivity metric) and segmented gray matter images from T1-weighted MRI images. Then, the classification of local unimodal and deep multimodal features is first performed using support vector machine (SVM) classifiers. Then, the majority voting technique is adopted to predict the final decision from the ensemble SVMs.The study is directed toward the classification of AD versus mild cognitive impairment (MCI) versus cognitively normal (CN) subjects. Our proposed method achieved an accuracy of 98.42% and demonstrated the robustness of multimodality imaging fusion.
Currently, the analysis of magnetic resonance imaging (MRI) brain images of pathological patients is performed manually, both for the recognition of brain structures or lesions and for their characterization. Physicians sometimes encounter difficulties in interpreting these images for a reliable diagnosis of the patient's condition. This is due to the difficulty of detecting the nature of the lesions, particularly glioma. Glioma is one of the most common tumors, and one of the most difficult to detect because of its shape, irregularities, and ambiguous limits. The segmentation of these tumors is one of the most crucial steps for their classification and surgical planning. This article presents a new, accurate, and automatic approach for the precise segmentation of early gliomas (benign tumors), combining the random walk (RW) algorithm and the simple linear iterative clustering algorithm. The study was carried out in four steps. The first step consisted of decomposing the image into superpixels to obtain an initial outline of the tumor. The superpixels were generated using the SLIC algorithm. In the second step, for each superpixel, a set of statistical and multifractal characteristics were calculated (gray‐level co‐occurrence matrix, multifractal detrending moving average). In the third step, the superpixels were classified using a supervised random forest (RF) type classier into healthy or tumorous brain tissue. In the final step, the contour of the detected tumor was enhanced using the customized RW algorithm. The proposed method was evaluated using the Brain Tumor Image Segmentation Challenge 2013 database. The results obtained are competitive compared to other existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.