BackgroundPentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma.Objectives and MethodsWe sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC). In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using 3H-thymidine incorporation, cell count and Boyden chamber assays.ResultsPTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13), Th1 (IFN-γ), or Th-17 (IL-17) cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC). Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2)-driven HASMC chemotactic activity.ConclusionsOur data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma.
Pentraxin 3 (PTX3) is a soluble pattern recognition receptor that is a humoral component of the innate immune system. It interacts with pathogenic moieties, infected and dying host cells and facilitates their removal through activation of appropriate innate and adaptive mechanisms. PTX3 is secreted by a diverse variety of cells, ranging from immune cells to structural cells, in response to Toll like receptor (TLR) engagement, inflammatory stimuli, and physical and chemical stress. Further, PTX3 plays an essential role in female fertility as it facilitates the organization of extracellular matrix in the cumulus oophorus. Such activity is also implicated in post-inflammation tissue repair. PTX3 is a multifunctional protein and plays a non-redundant role in providing immunity against potential immunological dangers. Thus, we assessed its role in lung immunity, as lungs are at a constant risk of infections and tissue damage that is attributable to perpetual exposure to foreign agents.
BackgroundLong pentraxin 3 (PTX3) is a novel candidate marker for inflammation in many chronic diseases. As a soluble pattern recognition receptor, PTX3 is involved in amplification of inflammatory reactions and regulation of innate immunity. Previously, we demonstrate that human airway smooth muscle cells (HASMC) express constitutively PTX3 and upon TNF stimulation. However, very little is known about the mechanism governing its expression in HASMC. We sought to investigate the mechanism governing TNF induced PTX3 expression in primary HASMC.MethodsHASMC were stimulated with TNF in the presence of transcriptional inhibitor actinomycin D (ActD) or MAPKs pharmacological inhibitors. PTX3 mRNA and protein expression were analyzed by Real-time RT-PCR and ELISA, respectively. PTX3 promoter activity was determined using luciferase assay.ResultsPTX3 mRNA and protein are expressed constitutively by HASMC and significantly up-regulated by TNF. TNF-induced PTX3 mRNA and protein release in HASMC were inhibited by transcriptional inhibitor actinomycin D. TNF induced significantly PTX3 promoter activation in HASMC. MAPK JNK and ERK1/2 specific inhibitors (SP600125 and UO126), but not p38, significantly down regulates TNF induced PTX3 promoter activity and protein release in HASMC. Finally, TNF mediated PTX3 promoter activity in HASMC was abolished upon mutation of NF-κβ and AP1 binding sites.ConclusionsOur data suggest that TNF induced PTX3 in HASMC at least via a transcriptional mechanism that involved MAPK (JNK and ERK1/2), NF-κβ and AP1 pathways. These results rise the possibility that HASMC derived PTX3 may participate in immune regulation in the airways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.