In the current work, chitosan (CS)–metal oxide nanohybrid (MONH) composites are prepared via combining CS with MONH made of vanadium oxide (V2O5), ytterbium trioxide (Yb2O3), and graphene oxide (GO) to generate promising wound dressing materials using the film-casting method. The developed nanohybrid@CS was examined using techniques such as Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA). For Yb2O3@CS, the surface morphology was shown to be a rough and porous surface with pores that ranged in size from 3.0 to 5.0 µm. For CS with Yb2O3, Yb2O3/V2O5@CS, and Yb2O3/V2O5/GO@CS, the contact angles were 72.5°, 68.2°, and 46.5°, respectively. When the nanohybrid@CS was in its hydrophilic phase, which is good for absorbing moisture and drugs, there was a notable decrease in angles that tended to rise. Additionally, the inclusion of MONH allowed the cell viability to be confirmed with an IC50 of 1997.2 g/mL and the cell growth to reach 111.3% at a concentration of 7.9 g/mL.
Wound dressings have been designed based on cellulose acetate encapsulated with different concentrations of chromium oxide (Cr2O3) and titanium oxide (TiO2) with/without graphene oxide (GO). This study comprises the structural, morphological, optical, thermal, and biological behavior of chromium oxide/titanium dioxide/graphene oxide-integrated cellulose acetate (CA) films. The CA-based film bond formation was introduced by functional group analysis via Fourier transform infrared (FTIR) spectroscopy. The fabricated Cr2O3/TiO2/GO@CA film SEM micrographs demonstrate transition metal oxides Cr2O3 and TiO2 on a nano-scale. The TiO2@CA shows the lowest contact angle with 30°. Optically, the refractive index increases from 1.76 for CA to 2.14 for the TiO2@CA film. Moreover, normal lung cells (A138) growth examination in a function of Cr2O3/TiO2/GO@CA film concentration is conducted, introducing 93.46% with the usage of 4.9 µg/mL. The resulting data showed a promising wound-healing behavior of the CA-based films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.