BackgroundLarge efforts have focused on screening for genes involved in the virulence and pathogenicity of Verticillium dahliae, a destructive fungal pathogen of numerous plant species that is difficult to control once the plant is infected. Although Agrobacterium tumefaciens-mediated transformation (ATMT) has been widely used for gene screening, a quick and easy method has been needed to facilitate transformation.ResultsHigh-quality protoplasts, with excellent regeneration efficiency (65 %) in TB3 broth (yeast extract 30 g, casamino acids 30 g and 200g sucrose in 1L H20), were generated using driselase (Sigma D-9515) and transformed with the GFP plasmid or linear GFP cassette using PEG or electroporation. PEG-mediated transformation yielded 600 transformants per microgram DNA for the linear GFP cassette and 250 for the GFP plasmid; electroporation resulted in 29 transformants per microgram DNA for the linear GFP cassette and 24 for the GFP plasmid. To determine whether short interfering RNAs (siRNAs) can be delivered to the protoplasts and used for silencing genes, we targeted the GFP gene of Vd-GFP (V. dahliae GFP strain obtained in this study) by delivering one of four different siRNAs—19-nt duplex with 2-nt 3′ overhangs (siRNA-gfp1, siRNA-gfp2, siRNA-gfp3 and siRNA-gfp4)—into the Vd-GFP protoplasts using PEG-mediated transformation. Up to 100 % silencing of GFP was obtained with siRNA-gfp4; the other siRNAs were less effective (up to 10 % silencing). Verticillium transcription activator of adhesion (Vta2) gene of V. dahliae was also silenced with four siRNAs (siRNA-vta1, siRNA-vta2, siRNA-vta3 and siRNA-vta4) independently and together using the same approach; siRNA-vta1 had the highest silencing efficiency as assessed by colony diameter and quantitative real time PCR (qRT-PCR) analysis.ConclusionOur quick, easy transformation method can be used to investigate the function of genes involved in growth, virulence and pathogenicity of V. dahliae.Electronic supplementary materialThe online version of this article (doi:10.1186/s12896-016-0287-4) contains supplementary material, which is available to authorized users.
Background: Germin-like Proteins (GLPs) play an important role in various stresses. Rice contains 43 GLPs, among which many remain functionally unexplored. The computational analysis will provide significant insight into their function. Objective: To find various structural properties, functional importance, phylogeny and expression pattern of all OsGLPs using various bioinformatics tools. Methods: Physiochemical properties, sub-cellular localization, domain composition, Nglycosylation and Phosphorylation sites, and 3D structural models of the OsGLPs were predicted using various bioinformatics tools. Functional analysis was carried out with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Blast2GO servers. The expression profile of the OsGLPs was predicted by retrieving the data for expression values from tissuespecific and hormonal stressed array libraries of RiceXPro. Their phylogenetic relationship was computed using Molecular and Evolutionary Genetic Analysis (MEGA6) tool. Results: Most of the OsGLPs are stable in the cellular environment with a prominent expression in the extracellular region (57%) and plasma membrane (33%). Besides, 3 basic cupin domains, 7 more were reported, among which NTTNKVGSNVTLINV, FLLAALLALASWQAI, and MASSSF were common to 99% of the sequences, related to bacterial pathogenicity, peroxidase activity, and peptide signal activity, respectively. Structurally, OsGLPs are similar but functionally they are diverse with novel enzymatic activities of oxalate decarboxylase, lyase, peroxidase, and oxidoreductase. Expression analysis revealed prominent activities in the root, endosperm, and leaves. OsGLPs were strongly expressed by abscisic acid, auxin, gibberellin, cytokinin, and brassinosteroid. Phylogenetically they showed polyphyletic origin with a narrow genetic background of 0.05%. OsGLPs of chromosome 3, 8, and 12 are functionally more important due to their defensive role against various stresses through co-expression strategy. Conclusion: The analysis will help to utilize OsGLPs in future food programs.
Hepatitis C is an infectious disease, caused by blood borne pathogen; the Hepatitis C Virus. In this study we analyzed blood samples collected from various risk groups for the prevalence of anti-HCV and active HCV infection with the help of Immunochromtographic tests and nested PCR. The prevalence of active HCV infection among the high risk groups was 15.57% (26/167). The prevalence of HCV in individual risk groups was 15%, 28%, 8%, 14.28% and 14.28% in the case of thalassemics, dialysis, major surgery group, dental surgery group and injection drug users respectively. Our analysis reveals the fact that health care facilities in the Khyber Pakhtunkhwa province of Pakistan are contributing a great deal towards the spread of HCV infection.
Verticillium wilt, caused by the ascomycete fungus Verticillium dahliae (Vd), is a devastating disease of numerous plant species. However, the pathogenicity/virulence-related genes in this fungus, which may be potential targets for improving plant resistance, remain poorly elucidated. For the study of these genes in Vd, we used a well-established host-induced gene silencing (HIGS) approach and identified 16 candidate genes, including a putative adenylate kinase gene (VdAK). Transiently VdAK-silenced plants developed milder wilt symptoms than control plants did. VdAK-knockout mutants were more sensitive to abiotic stresses and had reduced germination and virulence on host plants. Transgenic Nicotiana benthamiana and Arabidopsis thaliana plants that overexpressed VdAK dsRNAs had improved Vd resistance than the wild-type. RT-qPCR results showed that VdAK was also crucial for energy metabolism. Importantly, in an analysis of total small RNAs from Vd strains isolated from the transgenic plants, a small interfering RNA (siRNA) targeting VdAK was identified in transgenic N. benthamiana. Our results demonstrate that HIGS is a promising strategy for efficiently screening pathogenicity/virulence-related genes of Vd and that VdAK is a potential target to control this fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.