Verticillium wilt caused by the soil-borne fungus Verticillium dahliae is a common, devastating plant vascular disease notorious for causing economic losses. Despite considerable research on plant resistance genes, there has been little progress in modeling the effects of this fungus owing to its complicated pathogenesis. Here, we analyzed the transcriptional and metabolic responses of Arabidopsis thaliana to V. dahliae inoculation by Illumina-based RNA sequencing (RNA-seq) and nuclear magnetic resonance (NMR) spectroscopy. We identified 13,916 differentially expressed genes (DEGs) in infected compared with mock-treated plants. Gene ontology analysis yielded 11,055 annotated DEGs, including 2,308 for response to stress and 2,234 for response to abiotic or biotic stimulus. Pathway classification revealed involvement of the metabolic, biosynthesis of secondary metabolites, plant–pathogen interaction, and plant hormone signal transduction pathways. In addition, 401 transcription factors, mainly in the MYB, bHLH, AP2-EREBP, NAC, and WRKY families, were up- or downregulated. NMR analysis found decreased tyrosine, asparagine, glutamate, glutamine, and arginine and increased alanine and threonine levels following inoculation, along with a significant increase in the glucosinolate sinigrin and a decrease in the flavonoid quercetin glycoside. Our data reveal corresponding changes in the global transcriptomic and metabolic profiles that provide insights into the complex gene-regulatory networks mediating the plant’s response to V. dahliae infection.
BackgroundLarge efforts have focused on screening for genes involved in the virulence and pathogenicity of Verticillium dahliae, a destructive fungal pathogen of numerous plant species that is difficult to control once the plant is infected. Although Agrobacterium tumefaciens-mediated transformation (ATMT) has been widely used for gene screening, a quick and easy method has been needed to facilitate transformation.ResultsHigh-quality protoplasts, with excellent regeneration efficiency (65 %) in TB3 broth (yeast extract 30 g, casamino acids 30 g and 200g sucrose in 1L H20), were generated using driselase (Sigma D-9515) and transformed with the GFP plasmid or linear GFP cassette using PEG or electroporation. PEG-mediated transformation yielded 600 transformants per microgram DNA for the linear GFP cassette and 250 for the GFP plasmid; electroporation resulted in 29 transformants per microgram DNA for the linear GFP cassette and 24 for the GFP plasmid. To determine whether short interfering RNAs (siRNAs) can be delivered to the protoplasts and used for silencing genes, we targeted the GFP gene of Vd-GFP (V. dahliae GFP strain obtained in this study) by delivering one of four different siRNAs—19-nt duplex with 2-nt 3′ overhangs (siRNA-gfp1, siRNA-gfp2, siRNA-gfp3 and siRNA-gfp4)—into the Vd-GFP protoplasts using PEG-mediated transformation. Up to 100 % silencing of GFP was obtained with siRNA-gfp4; the other siRNAs were less effective (up to 10 % silencing). Verticillium transcription activator of adhesion (Vta2) gene of V. dahliae was also silenced with four siRNAs (siRNA-vta1, siRNA-vta2, siRNA-vta3 and siRNA-vta4) independently and together using the same approach; siRNA-vta1 had the highest silencing efficiency as assessed by colony diameter and quantitative real time PCR (qRT-PCR) analysis.ConclusionOur quick, easy transformation method can be used to investigate the function of genes involved in growth, virulence and pathogenicity of V. dahliae.Electronic supplementary materialThe online version of this article (doi:10.1186/s12896-016-0287-4) contains supplementary material, which is available to authorized users.
BACKGROUD Volatile terpenes can act as ecological signals to affect insect behavior. It has been proposed that the manipulation of terpenes in plants can help to control herbivore pests. In order to investigate the potential pest management function of (E)‐β‐caryophyllene in cotton plants, the (E)‐β‐caryophyllene synthase gene (GhTPS1) was inserted into Gossypium hirsutum variety R15 to generate overexpression lines. RESULTS Four GhTPS1‐transgenic lines were generated, and GhTPS1 expression in transgenic L18 and L46 lines was 3‐5‐fold higher than in R15 plants. The transgenic L18 and L46 lines also emitted significantly more (E)‐β‐caryophyllene than R15. In laboratory bioassays, L18 and L46 plants reduced pests Apolygus lucorum, Aphis gossypii and Helicoverpa armigera, and attracted parasitoids Peristenus spretus and Aphidius gifuensis, but not Microplitis mediator. In open‐field trials, L18 and L46 plants reduced A. lucorum, Adelphocoris suturalis and H. armigera, but had no significant effects on predators. CONCLUSION Our findings suggest that L18 and L46 plants reduce several major hemipteran and lepidopteran cotton pests, whereas, two parasitoids P. spretus and A. gifuensis, were attracted by L18 and L46 plants. This study shows that overexpressing GhTPS1 in cotton may help to improve pest management in cotton fields. © 2019 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.