We have investigated the applicability of commercially available lyophilized spirulina ( Arthrospira platensis), a microorganism uniformly labeled with C, as a readily accessible source of multipleC-labeled metabolites suitable as internal standards for the quantitative determination of intracellular bacterial metabolites. Metabolites of interest were analyzed by hydrophilic-interaction liquid chromatography coupled with high-resolution mass spectrometry. Multiple internal standards obtained from uniformly (U)-C-labeled extracts from spirulina were used to enable isotope-dilution mass spectrometry (IDMS) in the identification and quantification of intracellular metabolites. Extraction of the intracellular metabolites of Clostridium autoethanogenum using 2:1:1 chloroform/methanol/water was found to be the optimal method in comparison with freeze-thaw, homogenization, and sonication methods. The limits of quantification were ≤1 μM with excellent linearity for all of the calibration curves ( R ≥ 0.99) for 74 metabolites. The precision and accuracy were found to be within relative standard deviations (RSDs) of 15% for 49 of the metabolites and within RSDs of 20% for all of the metabolites. The method was applied to study the effects of feeding different levels of carbon monoxide (as a carbon source) on the central metabolism and Wood-Ljungdahl pathway of C. autoethanogenum grown in continuous culture over 35 days. Using LC-IDMS with U-C spirulina allowed the successful quantification of 52 metabolites in the samples, including amino acids, carboxylic acids, sugar phosphates, purines, and pyrimidines. The method provided absolute quantitative data on intracellular metabolites that was suitable for computational modeling to understand and optimize the C. autoethanogenum metabolic pathways active in gas fermentation.
Phospholipid-modified gold nanorods (phospholipid-GNRs) have demonstrated drastic cytotoxicity towards MCF-7 breast cancer cells compared to polyethylene glycol-coated GNRs (PEG-GNRs). In this study, the mechanism of cytotoxicity of phospholipid-GNRs towards MCF-7 cells was investigated using mass spectrometry-based global metabolic profiling and compared to PEGylated counterparts. The results showed that when compared to PEG-GNRs, phospholipid-GNRs induced significant and more pronounced impact on the metabolic profile of MCF-7 cells. Phospholipid-GNRs significantly decreased the levels of metabolic intermediates and end-products associated with cellular energy metabolisms resulting in dysfunction in TCA cycle, a reduction in glycolytic activity, and imbalance of the redox state. Additionally, phospholipid-GNRs disrupted several metabolism pathways essential for the normal growth and proliferation of cancer cells including impairment in purine, pyrimidine, and glutathione metabolisms accompanied by lower amino acid pools. On the other hand, the effects of PEG-GNRs were limited to alteration of glycolysis and pyrimidine metabolism. The current work shed light on the importance of metabolomics as a valuable analytical approach to explore the molecular effects of GNRs with different surface chemistry on cancer cell and highlights metabolic targets that might serve as promising treatment strategy in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.