Objectives Many youth develop complex trauma, which includes regulation problems in the domains of affect, attachment, behavior, biology, cognition, and perception. Therapists often request strategies for using evidence-based treatments (EBTs) for this population. This article describes practical strategies for applying Trauma-Focused Cognitive Behavioral Therapy (TF-CBT) for youth with complex trauma. Methods TF-CBT treatment phases are described and modifications of timing, proportionality and application are described for youth with complex trauma. Practical applications include a) dedicating proportionally more of the model to the TF-CBT coping skills phase; b) implementing the TF-CBT Safety component early and often as needed throughout treatment; c) titrating gradual exposure more slowly as needed by individual youth; d) incorporating unifying trauma themes throughout treatment; and e) when indicated, extending the TF-CBT treatment consolidation and closure phase to include traumatic grief components and to generalize ongoing safety and trust. Results Recent data from youth with complex trauma support the use of the above TF-CBT strategies to successfully treat these youth. Conclusions The above practical strategies can be incorporated into TF-CBT to effectively treat youth with complex trauma. Practice implications Practical strategies include providing a longer coping skills phase which incorporates safety and appropriate gradual exposure; including relevant unifying themes; and allowing for an adequate treatment closure phase to enhance ongoing trust and safety. Through these strategies therapists can successfully apply TF-CBT for youth with complex trauma.
Emerging evidence highlights protein acetylation, a prevalent lysine posttranslational modification, as a regulatory mechanism and promising therapeutic target in human viral infections. However, how infections dynamically alter global cellular acetylation or whether viral proteins are acetylated remains virtually unexplored. Here, we establish acetylation as a highly-regulated molecular toggle of protein function integral to the herpesvirus human cytomegalovirus (HCMV) replication. We offer temporal resolution of cellular and viral acetylations. By interrogating dynamic protein acetylation with both protein abundance and subcellular localization, we discover finely tuned spatial acetylations across infection time. We determine that lamin acetylation at the nuclear periphery protects against virus production by inhibiting capsid nuclear egress. Further studies within infectious viral particles identify numerous acetylations, including on the viral transcriptional activator pUL26, which we show represses virus production. Altogether, this study provides specific insights into functions of cellular and viral protein acetylations and a valuable resource of dynamic acetylation events.
Summary Viral proteins have evolved to target cellular organelles and usurp their functions for virus replication. Despite the knowledge of these critical functions for several organelles, little is known about peroxisomes during infection. Peroxisomes are primarily metabolic organelles with important functions in lipid metabolism. Here, we discovered that the enveloped viruses human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1) induce the biogenesis of and unique morphological changes to peroxisomes to support their replication. Targeted proteomic quantification revealed a global virus-induced upregulation of peroxisomal proteins. Mathematical modeling and microscopy structural analysis show that infection triggers peroxisome growth and fission, leading to increased peroxisome numbers and irregular disc-like structures. HCMV-induced peroxisome biogenesis increased the phospholipid plasmalogen, thereby enhancing virus production. Peroxisome regulation and dependence were not observed for the non-enveloped adenovirus. Our findings uncover a role of peroxisomes in viral pathogenesis, with likely implications for multiple enveloped viruses.
One direct route for the discovery of therapeutic human monoclonal antibodies (mAbs) involves the isolation of peripheral B cells from survivors/sero-positive individuals after exposure to an infectious reagent or disease etiology followed by single-cell sequencing or hybridoma generation. Peripheral B cells, however, are not always easy to obtain and only represent a small percentage of the total B cell population across all bodily tissues. Although it has been demonstrated that tandem mass spectrometry (MS/MS) techniques can interrogate the full polyclonal antibody (pAb) response to an antigen in vivo, all current approaches identify MS/MS spectra against databases derived from genetic sequencing of B cells from the same patient. In this proof-of-concept study, we demonstrate the feasibility of a novel MS/MS antibody discovery approach in which only serum antibodies are required, without the need for sequencing of genetic material. Peripheral pAbs from a CMV exposed individual were purified by glycoprotein B antigen-affinity and de novo sequenced from MS/MS data. Purely MS-derived mAbs were then manufactured in mammalian cells to validate potency via antigen-binding ELISA. Interestingly, we found that these mAbs accounted for 1–2% of total donor IgG but were not detected in parallel sequencing of memory B cells from the same patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.