The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a communitydriven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.Synthetic biology treats biological organisms as a new technological medium with a unique set of characteristics, such as the ability to self-repair, evolve and replicate. These characteristics create their own engineering challenges, but offer a rich and largely untapped source of potential applications across a broad range of sectors 1,2 . Applications such as biomolecular computing 3 , metabolic engineering 4 , or reconstruction and exploration of natural cell biology 5,6 commonly require the design of new genetically encoded systems. As engineers, synthetic biologists most often base their designs on previously described 'DNA segments' (see Supplementary Table 1 for definitions of selected terms) to meet their design requirements. Reuse of the DNA sequence for these segments involves their exchange between laboratories and their hierarchical composition to form devices and systems with higher level function.Every engineering field relies on a set of 'standards' 7 that practitioners follow to enable the exchange and reuse of designs for 'systems' , 'devices' and 'components' . Similarly, the representation of synthetic biology designs using computer-readable 'data standards' has the potential to facilitate the forward engineering of novel biological systems from previously characterized devices and components. For example, such standards could enable synthetic biology companies to offer catalogs of devices and components by means of computerreadable data sheets, just as modern semiconductor companies do for electronics. Such standards could also enable a synthetic biologist to develop portions of a design using one software tool, refine the design using another tool, and finally transmit it electronically to a colleague or commercial fabrication company.In order for synthetic biology designs to scale up in complexity, researchers will need to make greater use of specialized design tools and parts repositories. Seamless inter-tool communication would, for example, allow the separation of gene...
Recognizing that certain biological functions can be associated with specific DNA sequences has led various fields of biology to adopt the notion of the genetic part. This concept provides a finer level of granularity than the traditional notion of the gene. However, a method of formally relating how a set of parts relates to a function has not yet emerged. Synthetic biology both demands such a formalism and provides an ideal setting for testing hypotheses about relationships between DNA sequences and phenotypes beyond the gene-centric methods used in genetics. Attribute grammars are used in computer science to translate the text of a program source code into the computational operations it represents. By associating attributes with parts, modifying the value of these attributes using rules that describe the structure of DNA sequences, and using a multi-pass compilation process, it is possible to translate DNA sequences into molecular interaction network models. These capabilities are illustrated by simple example grammars expressing how gene expression rates are dependent upon single or multiple parts. The translation process is validated by systematically generating, translating, and simulating the phenotype of all the sequences in the design space generated by a small library of genetic parts. Attribute grammars represent a flexible framework connecting parts with models of biological function. They will be instrumental for building mathematical models of libraries of genetic constructs synthesized to characterize the function of genetic parts. This formalism is also expected to provide a solid foundation for the development of computer assisted design applications for synthetic biology.
The context-free grammar editor is part of the GenoCAD application. A public instance of GenoCAD is available at http://www.genocad.org. GenoCAD source code is available from SourceForge and licensed under the Apache v2.0 open source license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.