Rapid developments have been made in synthetic biology within the past two decades, particularly in combination with chemistry, computer science, and other disciplines. Genetic components and internal features have been a main focus of research for synthetic biologists. Logic gates can be applied in various disciplines, but have not yet been used for plasmid design. GenoCAD is a computer-aided design software programme for synthetic biology that can be used to design complex structures. Thus, in this study, the authors analysed a large, commonly used data set containing over 70,000 feature sequences and eventually obtained comprehensive information for a complete data set without redundancy. By analysing the internal feature sequences, the authors input the most representative data in the GenoCAD platform, along with design rules and grammar for constructing high-quality practical parts. Additionally, the orderly logic gate for building biological parts designed in this study may be useful for professionals and non-professionals and may have applications in the design of a new biological computer. Finally, the authors compared the constructed plasmid with other successful examples in BLAST and PlasMapper software to demonstrate the rationality of the orderly logic gate.