Electrical stimulation of the motor cortex in the rat can evoke complex forelimb multi-joint movements, including movement of limb and paw. In this study, these movements have been quantified in terms of 3D displacement and kinematic variables of two markers positioned on the wrist and middle digits (limb and paw movement, respectively). Electrical microstimulation was applied to the motor cortex using a pulse train of 500 ms duration. Movements were measured using a high-resolution 3D optical system. Five classes of limb movements (abduction, adduction, extension, retraction, elevation) and four classes of paw movements (opening, closure, opening/closure sequence, supination) were described according to their kinematics. A consistent topography of these classes of movements was presented across the motor cortex together with a topography of spatial locations to which the paw was directed. In about one-half of cortical sites, a specific pattern of limb-paw movement combination did exist. Four categories of limb-paw movements resembling behavioral repertoire were identified: reach-shaping, reach-grasp sequence, bring-to-body, and hold-like movement. Overall, the forelimb motor region included: (1) a large caudal forelimb area dominated by reach-shaping movement representation; (2) a small rostral area containing reach-grasp sequence and bring-to-body movement representation; and (3) a more lateral portion where hold-like movement was represented. These results support the view that, in rats, the motor cortex controls forelimb movements at a relatively complex level and suggest that the orderly representation of complex movements and their dynamics/kinematics emerge from the principles of forelimb motor cortex organization.
Intracortical microstimulation (ICMS) delivered to the motor cortex (M1) via long- or short-train duration (long- or short-duration ICMS) can evoke coordinated complex movements or muscle twitches, respectively. The role of subcortical cerebellar input in M1 output, in terms of long- and short-duration ICMS-evoked movement and motor skill performance, was evaluated in rats with bilateral lesion of the deep cerebellar nuclei. After the lesion, distal forelimb movements were seldom observed, and almost 30% of proximal forelimb movements failed to match criteria defining the movement class observed under control conditions. The classifiable movements could be evoked in different cortical regions with respect to control and many kinematic variables were strongly affected. Furthermore, movement endpoints within the rat's workspace shrunk closer to the body, while performance in the reaching/grasping task worsened. Surprisingly, neither the threshold current values for evoking movements nor the overall size of forelimb movement representation changed with respect to controls in either long- or short-duration ICMS. We therefore conclude that cerebellar input via the motor thalamus is crucial for expressing the basic functional features of the motor cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.