Oxalate decarboxylase (EC 4.1.1.2) catalyzes the conversion of oxalate to formate and carbon dioxide and utilizes dioxygen as a cofactor. By contrast, the evolutionarily related oxalate oxidase (EC 1.2.3.4) converts oxalate and dioxygen to carbon dioxide and hydrogen peroxide. Divergent free radical catalytic mechanisms have been proposed for these enzymes that involve the requirement of an active site proton donor in the decarboxylase but not the oxidase reaction. The oxidase possesses only one domain and manganese binding site per subunit, while the decarboxylase has two domains and two manganese sites per subunit. A structure of the decarboxylase together with a limited mutagenesis study has recently been interpreted as evidence that the C-terminal domain manganese binding site (site 2) is the catalytic site and that Glu-333 is the crucial proton donor (Anand, R., Dorrestein, P. C., Kinsland, C., Begley, T. P., and Ealick, S. E. (2002) Biochemistry 41, 7659 -7669).The N-terminal binding site (site 1) of this structure is solvent-exposed (open) and lacks a suitable proton donor for the decarboxylase reaction. We report a new structure of the decarboxylase that shows a loop containing a 3 10 helix near site 1 in an alternative conformation. This loop adopts a "closed" conformation forming a lid covering the entrance to site 1. This conformational change brings Glu-162 close to the manganese ion, making it a new candidate for the crucial proton donor. Sitedirected mutagenesis of equivalent residues in each domain provides evidence that Glu-162 performs this vital role and that the N-terminal domain is either the sole or the dominant catalytically active domain.
YvrK was found to contain between 0.86 and 1.14 atoms of manganese/subunit. EPR spectroscopy showed that the metal ion was predominantly but not exclusively in the Mn(II) oxidation state. The hyperfine coupling constant (A ؍ 9.5 millitesla) of the main g ؍ 2 signal was consistent with oxygen and nitrogen ligands with hexacoordinate geometry. The structure of YvrK was modeled on the basis of homology with oxalate oxidase, canavalin, and phaseolin, and its hexameric oligomerization was predicted by analogy with proglycinin and homogentisate 1,2-dioxygenase. Although YvrK possesses two potential active sites, only one could be fully occupied by manganese. The possibility that the C-terminal domain active site has no manganese bound and is buried in an intersubunit interface within the hexameric enzyme is discussed. A mechanism for oxalate decarboxylation is proposed, in which both Mn(II) and O 2 are cofactors that act together as a two-electron sink during catalysis.
Oxalate decarboxylases and oxalate oxidases are members of the cupin superfamily of proteins that have many common features: a manganese ion with a common ligand set, the substrate oxalate, and dioxygen (as either a unique cofactor or a substrate). We have hypothesized that these enzymes share common catalytic steps that diverge when a carboxylate radical intermediate becomes protonated. The Bacillus subtilis decarboxylase has two manganese binding sites, and we proposed that Glu162 on a flexible lid is the site 1 general acid. We now demonstrate that a decarboxylase can be converted into an oxidase by mutating amino acids of the lid that include Glu162 with specificity switches of 282,000 (SEN161-3DAS), 275,000 (SENS161-4DSSN), and 225,000 (SENS161-4DASN). The structure of the SENS161-4DSSN mutant showed that site 2 was not affected. The requirement for substitutions other than of Glu162 was, at least in part, due to the need to decrease the Km for dioxygen for the oxidase reaction. Reversion of decarboxylase activity could be achieved by reintroducing Glu162 to the SENS161-4DASN mutant to give a relative specificity switch of 25,600. This provides compelling evidence for the crucial role of Glu162 in the decarboxylase reaction consistent with it being the general acid, for the role of the lid in controlling the Km for dioxygen, and for site 1 being the sole catalytically active site. We also report the trapping of carboxylate radicals produced during turnover of the mutant with the highest oxidase activity. Such radicals were also observed with the wild-type decarboxylase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.