GH receptor (GHR) gene-disrupted mice (GHR-/-) have provided countless discoveries as to the numerous actions of GH. Many of these discoveries highlight the importance of GH in adipose tissue. For example GHR-/- mice are insulin sensitive yet obese with preferential enlargement of the sc adipose depot. GHR-/- mice also have elevated levels of leptin, resistin, and adiponectin, compared with controls leading some to suggest that GH may negatively regulate certain adipokines. To help clarify the role that GH exerts specifically on adipose tissue in vivo, we selectively disrupted GHR in adipose tissue to produce Fat GHR Knockout (FaGHRKO) mice. Surprisingly, FaGHRKOs shared only a few characteristics with global GHR-/- mice. Like the GHR-/- mice, FaGHRKO mice are obese with increased total body fat and increased adipocyte size. However, FaGHRKO mice have increases in all adipose depots with no improvements in measures of glucose homeostasis. Furthermore, resistin and adiponectin levels in FaGHRKO mice are similar to controls (or slightly decreased) unlike the increased levels found in GHR-/- mice, suggesting that GH does not regulate these adipokines directly in adipose tissue in vivo. Other features of FaGHRKO mice include decreased levels of adipsin, a near-normal GH/IGF-1 axis, and minimal changes to a large assortment of circulating factors that were measured such as IGF-binding proteins. In conclusion, specific removal of GHR in adipose tissue is sufficient to increase adipose tissue and decrease circulating adipsin. However, removal of GHR in adipose tissue alone is not sufficient to increase levels of resistin or adiponectin and does not alter glucose metabolism.
Prolactin has been shown to have an immunoregulatory role in the rodent immune response. A prolactinlike molecule has also been found in mouse splenocytes and a human B-lymphoblastoid cell line. We have evaluated whether human peripheral blood mononuclear cells (PBMCs) synthesize and/or secrete prolactin. We used the polymerase chain reaction (PCR) to generate a 276-base-pair prolactin product from human PBMCs, and Southern blot analysis confirmed that it was related to prolactin. Western blotting using a polyclonal antibody to prolactin indicated that cell extracts prepared from human PBMCs contained a high molecular mass (60-kDa) immunoreactive prolactin. To determine whether this PBMC prolactin was being secreted, we developed a highly sensitive and specific hormonal enzyme-linked immunoplaque assay. With this assay, we were able to detect human prolactin secretion from concanavalin A (Con A)-or phytohemagglutinin-stimulated PBMCs but not from unstimulated PBMCs. We next sought to determine whether this secreted prolactin could function as an autocrine growth factor in lymphoproliferation. We observed that anti-human prolactin antiserum significanly inhibited human PBMC proliferation in response to Con A or phytohemagglutinin. We conclude that a prolactin-like molecule is synthesized and secreted by human PBMCs and that it functions in an autocrine manner as a growth factor for lymphoproliferation.Recent studies suggest an immunoregulatory role for prolactin in rodents. In animals, hypophysectomy results in cessation of the growth of the thymus gland (1), decreased antibody titers against sheep red blood cells, and depressed delayed hypersensitivity reaction to chlorodinitrobenzene (2). Bromocryptine-induced hypoprolactinemia in mice injected with Listeria monocytogenes increases mortality that is associated with impaired lymphocyte proliferation and decreased production of macrophage-activating factors by T lymphocytes (3). Further, a prolactin-like molecule is secreted following Con A stimulation of murine lymphocytes (4), and a prolactin-like mRNA as well as a secreted product have been detected in human B-lymphoblastoid cell lines (5, 6). In contrast, Clevenger et al. (7) could not demonstrate prolactin-specific mRNA or prolactin secretion following interleukin 2 stimulation of a mouse T-lymphocyte line.Several investigators (7-9) using rodent lymphoid cell lines or splenocytes have found that a prolactin-like protein is required for lymphocyte mitogenesis. The relevance of these observations to human cellular immunity has not been explored. Here we document that human peripheral blood mononuclear cells (PBMCs) synthesize and secrete a prolactin-like molecule that functions in an autocrine loop as a growth factor for lymphoproliferation. MATERIALS AND METHODSOligonucleotide Primer Design. The sequences and positions of the two 21-mer primers used for PCR amplification of human prolactin cDNA are shown in Fig. 1 (10). The 5' primer is located within exon 3 of the human prolactin gene and the 3' pri...
The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves this isoform-specific trophic role in the skeletal muscle, we used Na/K-ATPase α1-haploinsufficient (α1) mice. A 30% decrease of Na/K-ATPase α1 protein expression without change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus weights were not significantly affected, likely because of their very low expression level of α1 compared with the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or glycogen metabolism. Serum analytes including K, fat tissue mass, and exercise capacity were not altered in α1 mice. The impact of α1 content on soleus muscle mass is consistent with a Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by α2. The preserved running capacity in α1 is in sharp contrast with previously reported consequences of genetic manipulation of α2. Taken together, these results lend further support to the concept of distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle.
Aim: Highly prevalent diseases such as insulin resistance and heart failure are characterized by reduced metabolic flexibility and reserve. We tested whether Na/K-ATPase (NKA)-mediated regulation of Src kinase, which requires two NKA sequences specific to the α1 isoform, is a regulator of metabolic capacity that can be targeted pharmacologically. Methods: Metabolic capacity was challenged functionally by Seahorse metabolic flux analyses and glucose deprivation in LLC-PK1-derived cells expressing Src binding rat NKA α1, non-Src-binding rat NKA α2 (the most abundant NKA isoform in the skeletal muscle), and Src binding gain-of-function mutant rat NKA α2. Mice with skeletal muscle-specific ablation of NKA α1 (skα1−/−) were generated using a MyoD:Cre-Lox approach and were subjected to treadmill testing and Western diet. C57/Bl6 mice were subjected to Western diet with or without pharmacological inhibition of NKA α1/Src modulation by treatment with pNaKtide, a cell-permeable peptide designed by mapping one of the sites of NKA α1/Src interaction. Results: Metabolic studies in mutant cell lines revealed that the Src binding regions of NKA α1 are required to maintain metabolic reserve and flexibility. Skα1−/− mice had decreased exercise endurance and mitochondrial Complex I dysfunction. However, skα1−/− mice were resistant to Western diet-induced insulin resistance and glucose intolerance, a protection phenocopied by pharmacological inhibition of NKA α1-mediated Src regulation with pNaKtide. Conclusions: These results suggest that NKA α1/Src regulatory function may be targeted in metabolic diseases. Because Src regulatory capability by NKA α1 is exclusive to endotherms, it may link the aerobic scope hypothesis of endothermy evolution to metabolic dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.