a b s t r a c tWe monitor the capillary thinning and breakup of low viscous liquid filaments with high speed imaging to determine the relaxation time of dilute polymer solutions in extension. The induction of filament thinning by a slow extension of a liquid bridge beyond the static stability limit enables one to create axially symmetric thinning profiles with minimized inertial oscillations from acceleration of the liquid. The minimized disturbance of the capillary thinning process by this slow retraction method (SRM) allows the observation and quantitative fitting of the visco-capillary and inertio-visco-capillary balance as well as the potential flow regime for a series of Newtonian liquids covering a viscosity range from 350 to 27 mPa s. For dilute solutions of polyethylene oxide in water the SRM allows the reliable determination of relaxation times in extension of as low as 240 s. A lower limit for the polymer concentration c low below which an elasto-capillary balance cannot be observed is introduced, based on the finite extensibility limit L 2 of the polymer chain.
The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro-and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS. V C 2013 AIP Publishing LLC.
Suspensions of healthy and pathological red blood cells (RBC) flowing in microfluidic devices are frequently used to perform in vitro blood experiments for a better understanding of human microcirculation hemodynamic phenomena. This work reports the development of particulate viscoelastic analogue fluids able to mimic the rheological and hemorheological behavior of pathological RBC suspensions flowing in microfluidic systems. The pathological RBCs were obtained by an incubation of healthy RBCs at a high concentration of glucose, representing the pathological stage of hyperglycaemia in diabetic complications, and analyses of their deformability and aggregation were carried out. Overall, the developed in vitro analogue fluids were composed of a suspension of semi-rigid microbeads in a carrier viscoelastic fluid made of dextran 40 and xanthan gum. All suspensions of healthy and pathological RBCs, as well as their particulate analogue fluids, were extensively characterized in steady shear flow, as well as in small and large amplitude oscillatory shear flow. In addition, the well-known cell-free layer (CFL) phenomenon occurring in microchannels was investigated in detail to provide comparisons between healthy and pathological in vitro RBC suspensions and their corresponding analogue fluids at different volume concentrations (5% and 20%). The experimental results have shown a similar rheological behavior between the samples containing a suspension of pathological RBCs and the proposed analogue fluids. Moreover, this work shows that the particulate in vitro analogue fluids used have the ability to mimic well the CFL phenomenon occurring downstream of a microchannel contraction for pathological RBC suspensions. The proposed particulate fluids provide a more realistic behavior of the flow properties of suspended RBCs when compared with existing non-particulate blood analogues, and consequently, they are advantageous for detailed investigations of microcirculation.
In this work we focus on the development of low viscosity Boger fluids and assess their elasticity analyzing the flow through a microfluidic hyperbolic contraction. Rheological tests in shear and extensional flows were carried out in order to evaluate the effect of the addition of a salt (NaCl) to dilute aqueous solutions of polyacrylamide at 400, 250, 125 and 50 ppm (w/w). The rheological data showed that when 1% (w/w) of NaCl was added, a significant decrease of the shear viscosity curve was observed, and a nearly constant shear viscosity was found for a wide range of shear rates, indicating Boger fluid behavior. The relaxation times, measured using a capillary break-up extensional rheometer (CaBER), decreased for lower polymer concentrations, and with the addition of NaCl. Visualizations of these Boger fluids flowing through a planar microfluidic geometry containing a hyperbolic contraction, which promotes a nearly uniform extension rate at the centerline of the geometry, was important to corroborate their degree of elasticity. Additionally, the quantification of the vortex growth upstream of the hyperbolic contraction was used with good accuracy and reproducibility to assess the relaxation time for the less concentrated Boger fluids, for which CaBER measurements are difficult to perform
The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. RESEARCH PAPERMicrofluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media Abstract In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.