Colorectal cancer mortality rate and highly altered proteins from the Wnt/β-catenin pathway increase the scientific community’s interest in finding alternatives for prevention and treatment. This study aims to determine the biological effect of chlorogenic acid (CGA) on two colorectal cancer cell lines, HT-29 and SW480, and its interactions with β-catenin and LRP6 to elucidate a possible modulatory mechanism on the Wnt/β-catenin pathway. These effects were determined by propidium iodide and DiOC6 for mitochondrial membrane permeability, MitoTracker Red for mitochondrial ROS production, DNA content for cell distribution on cell cycle phases, and molecular docking for protein–ligand interactions and binding affinity. Here, it was found that CGA at 2000 µM significantly affects cell viability and causes DNA fragmentation in SW480 cells rather than in HT-29 cells, but in both cell lines, it induces ROS production. Additionally, CGA has similar affinity and interactions for LRP6 as niclosamide but has a higher affinity for both β-catenin sites than C2 and iCRT14. These results suggest a possible modulatory role of CGA over the Wnt/β-catenin pathway in colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.