We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT) method with the B3LYP/6-31G* and B3LYP/6-311++G * * methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF) methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242 cmtogether with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs) and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM) for the dimer were carried out to study the charge transference interactions of the compound.
We have studied L-ascorbic acid and characterized it by infrared spectroscopy in solid and aqueous solution phases. The density functional theory (DFT) method together with Pople's basis set show that three stable molecules for the compound have been theoretically determined in the gas phase, and that an average of only two more stable conformations are present in the solid phase, as it was experimentally observed. The harmonic vibrational wavenumbers for the optimized geometries of both structures were calculated at B3LYP/6-31G*and B3LYP/6-311++G** levels at the proximity of the isolated molecule. For a complete assignment of the vibrational spectra in the compound solid and aqueous solution phases, DFT calculations were combined with Pulay's scaled quantum mechanics force field methodology in order to fit the theoretical wavenumber values to the experimental ones. In this way, a complete assignment of all the observed bands in the infrared spectrum for l-ascorbic acid was performed. The natural bond orbital study reveals the characteristics of the electronic delocalization of the three structures while the corresponding topological properties of electronic charge density are analyzed by employing Bader's atoms-in-molecules theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.