We present an annotation management system for relational databases. In this system, every piece of data in a relation is assumed to have zero or more annotations associated with it and annotations are propagated along, from the source to the output, as data is being transformed through a query. Such an annotation management system is important for understanding the provenance and quality of data, especially in applications that deal with integration of scientific and biological data.We present an extension, pSQL, of a fragment of SQL that has three different types of annotation propagation schemes, each useful for different purposes. The default scheme propagates annotations according to where data is copied from. The default-all scheme propagates annotations according to where data is copied from among all equivalent formulations of a given query. The custom scheme allows a user to specify how annotations should propagate. We present a storage scheme for the annotations and describe algorithms for translating a pSQL query under each propagation scheme into one or more SQL queries that would correctly retrieve the relevant annotations according to the specified propagation scheme. For the default-all scheme, we also show how we generate finitely many queries that can simulate the annotation propagation behavior of the set of all equivalent queries, which is possibly infinite. The algorithms are implemented and the feasibility of the system is demonstrated by a set of experiments that we have conducted.
Semantic role labeling (SRL) is crucial to natural language understanding as it identifies the predicate-argument structure in text with semantic labels. Unfortunately, resources required to construct SRL models are expensive to obtain and simply do not exist for most languages. In this paper, we present a two-stage method to enable the construction of SRL models for resourcepoor languages by exploiting monolingual SRL and multilingual parallel data. Experimental results show that our method outperforms existing methods. We use our method to generate Proposition Banks with high to reasonable quality for 7 languages in three language families and release these resources to the research community.
Schema integration is the problem of creating a unified target schema based on a set of existing source schemas that relate to each other via specified correspondences. The unified schema gives a standard representation of the data, thus offering a way to deal with the heterogeneity in the sources. In this paper, we develop a method and a design tool that provide: 1) adaptive enumeration of multiple interesting integrated schemas, and 2) easy-to-use capabilities for refining the enumerated schemas via user interaction. Our method is a departure from previous approaches to schema integration, which do not offer a systematic exploration of the possible integrated schemas.The method operates at a logical level, where we recast each source schema into a graph of concepts with Has-A relationships. We then identify matching concepts in different graphs by taking into account the correspondences between their attributes. For every pair of matching concepts, we have two choices: merge them into one integrated concept or keep them as separate concepts. We develop an algorithm that can systematically output, without duplication, all possible integrated schemas resulting from the previous choices. For each integrated schema, the algorithm also generates a mapping from the source schemas to the integrated schema that has precise information-preserving properties. Furthermore, we avoid a full enumeration, by allowing users to specify constraints on the merging process, based on the schemas produced so far. These constraints are then incorporated in the enumeration of the subsequent schemas. The result is an adaptive and interactive enumeration method that significantly reduces the space of alternative schemas, and facilitates the selection of the final integrated schema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.