A heterogeneous information network is a network composed of multiple types of objects and links. Recently, it has been recognized that strongly-typed heterogeneous information networks are prevalent in the real world. Sometimes, label information is available for some objects. Learning from such labeled and unlabeled data via transductive classification can lead to good knowledge extraction of the hidden network structure. However, although classification on homogeneous networks has been studied for decades, classification on heterogeneous networks has not been explored until recently.In this paper, we consider the transductive classification problem on heterogeneous networked data which share a common topic. Only some objects in the given network are labeled, and we aim to predict labels for all types of the remaining objects. A novel graph-based regularization framework, GNetMine, is proposed to model the link structure in information networks with arbitrary network schema and arbitrary number of object/link types. Specifically, we explicitly respect the type differences by preserving consistency over each relation graph corresponding to each type of links separately. Efficient computational schemes are then introduced to solve the corresponding optimization problem. Experiments on the DBLP data set show that our algorithm significantly improves the classification accuracy over existing state-of-theart methods.ii To my family for all their love.iii
It has been recently recognized that heterogeneous information networks composed of multiple types of nodes and links are prevalent in the real world. Both classification and ranking of the nodes (or data objects) in such networks are essential for network analysis. However, so far these approaches have generally been performed separately. In this paper, we combine ranking and classification in order to perform more accurate analysis of a heterogeneous information network. Our intuition is that highly ranked objects within a class should play more important roles in classification. On the other hand, class membership information is important for determining a quality ranking over a dataset. We believe it is therefore beneficial to integrate classification and ranking in a simultaneous, mutually enhancing process, and to this end, propose a novel ranking-based iterative classification framework, called RankClass. Specifically, we build a graph-based ranking model to iteratively compute the ranking distribution of the objects within each class. At each iteration, according to the current ranking results, the graph structure used in the ranking algorithm is adjusted so that the subnetwork corresponding to the specific class is emphasized, while the rest of the network is weakened. As our experiments show, integrating ranking with classification not only generates more accurate classes than the state-of-art classification methods on networked data, but also provides meaningful ranking of objects within each class, serving as a more informative view of the data than traditional classification.
Semantic role labeling (SRL) is crucial to natural language understanding as it identifies the predicate-argument structure in text with semantic labels. Unfortunately, resources required to construct SRL models are expensive to obtain and simply do not exist for most languages. In this paper, we present a two-stage method to enable the construction of SRL models for resourcepoor languages by exploiting monolingual SRL and multilingual parallel data. Experimental results show that our method outperforms existing methods. We use our method to generate Proposition Banks with high to reasonable quality for 7 languages in three language families and release these resources to the research community.
Real world scenarios present a challenge for text classification, since labels are usually expensive and the data is often characterized by class imbalance. Active Learning (AL) is a ubiquitous paradigm to cope with data scarcity. Recently, pre-trained NLP models, and BERT in particular, are receiving massive attention due to their outstanding performance in various NLP tasks. However, the use of AL with deep pre-trained models has so far received little consideration. Here, we present a large-scale empirical study on active learning techniques for BERT-based classification, addressing a diverse set of AL strategies and datasets. We focus on practical scenarios of binary text classification, where the annotation budget is very small, and the data is often skewed. Our results demonstrate that AL can boost BERT performance, especially in the most realistic scenario in which the initial set of labeled examples is created using keyword-based queries, resulting in a biased sample of the minority class. We release our research framework, aiming to facilitate future research along the lines explored here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.