We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and costeffective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84-0.99 for TOC, r = 0.85-0.99 for TIC, and r = 0.68-0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.
The climate of the last two millennia was characterized by decadal to multicentennial variations, which were recorded in terrestrial records and had important societal impacts. The cause of these climatic events is still under debate, but changes in the North Atlantic circulation have often been proposed to play an important role. In this review we compile available high‐resolution paleoceanographic data sets from the northern North Atlantic and Nordic Seas. The records are grouped into regions related to modern ocean conditions, and their variability is discussed. We additionally discuss our current knowledge from modeling studies, with a specific focus on the dynamical changes that are not well inferred from the proxy records. An illustration is provided through the analysis of two climate model ensembles and an individual simulation of the last millennium. This review thereby provides an up‐to‐date paleoperspective on the North Atlantic multidecadal to multicentennial ocean variability across the last two millennia.
We undertake the first comprehensive effort to integrate North Atlantic marine climate records for the last millennium, highlighting some key components common within this system at a range of temporal and spatial scales. In such an approach, careful consideration needs to be given to the complexities inherent to the marine system. Composites therefore need to be hydrographically constrained and sensitive to both surface water mass variability and three-dimensional ocean dynamics. This study focuses on the northeast (NE) North Atlantic Ocean, particularly sites influenced by the North Atlantic Current. A composite plus regression approach is used to create an inter-regional NE North Atlantic reconstruction of sea surface temperature (SST) for the last 1000 years. We highlight the loss of spatial information associated with large-scale composite reconstructions of the marine environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.