Wearable robotics is a field receiving increasing attention from the scientific community. It has great potential to improve rehabilitation process or increase the human capabilities but faces a number of challenges. On the one side, powerful actuation is required, leading to considerable system weight. On the other side, due to the close physical interaction with a human and taking into consideration safety requirements, the displacement of the actuators is crucial to the operational efficiency and functionality of exoskeleton devices. One possible solution for the design of an operational and efficient wearable device is to relocate its actuators out of joints and transmit the force by means of cable-based transmission systems. This paper presents an overview of various cable-based configurations correlated to conventional mechanical designs and their implementation in exoskeleton's structures and an overview of exoskeleton robots including comparison and trend analyses.
Low-Back Pain (LBP) affects a large portion of the working population. Preventive exoskeletons have been proposed to reduce the moments on the lower back, specifically around the lumbosacral (L5/S1) joint. High correlation has been shown, between reducing the moments around the L5/S1 joint and intervertebral compression forces, which in turn have been identified as a risk factor for developing LBP. However, most passive back support exoskeletons use rigid plates or stiff beams to support the spine that limit the range of motion of the wearer. A large range of motion and versatility are especially desirable for industrial applications. To overcome these limitations, a passive biomimetic exo-spine has been designed, modelled and an initial prototype tested. Its potential to allow for a large range of motion, whilst at the same time limiting the most extreme and potentially harmful postures has been shown.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.