Transposons and transposon-like repetitive elements collectively occupy 44% of the human genome sequence. In an effort to measure the levels of genetic variation that are caused by human transposons, we have developed a new method to broadly detect transposon insertion polymorphisms of all kinds in humans. We began by identifying 606,093 insertion and deletion (indel) polymorphisms in the genomes of diverse humans. We then screened these polymorphisms to detect indels that were caused by de novo transposon insertions. Our method was highly efficient and led to the identification of 605 nonredundant transposon insertion polymorphisms in 36 diverse humans. We estimate that this represents 25-35% of 5702ف common transposon polymorphisms in human populations. Because we identified all transposon insertion polymorphisms with a single method, we could evaluate the relative levels of variation that were caused by each transposon class. The average human in our study was estimated to harbor 1283 Alu insertion polymorphisms, 180 L1 polymorphisms, 56 SVA polymorphisms, and 17 polymorphisms related to other forms of mobilized DNA. Overall, our study provides significant steps toward (i) measuring the genetic variation that is caused by transposon insertions in humans and (ii) identifying the transposon copies that produce this variation.
An international effort is underway to generate a comprehensive haplotype map (HapMap) of the human genome represented by an estimated 300,000 to 1 million 'tag' single nucleotide polymorphisms (SNPs). Our analysis indicates that the current human SNP map is not sufficiently dense to support the HapMap project. For example, 24.6% of the genome currently lacks SNPs at the minimal density and spacing that would be required to construct even a conservative tag SNP map containing 300,000 SNPs. In an effort to improve the human SNP map, we identified 140,696 additional SNP candidates using a new bioinformatics pipeline. Over 51,000 of these SNPs mapped to the largest gaps in the human SNP map, leading to significant improvements in these regions. Our SNPs will be immediately useful for the HapMap project, and will allow for the inclusion of many additional genomic intervals in the final HapMap. Nevertheless, our results also indicate that additional SNP discovery projects will be required both to define the haplotype architecture of the human genome and to construct comprehensive tag SNP maps that will be useful for genetic linkage studies in humans.
Retroviruses and their relatives, the long terminal repeat (LTR) retrotransposons, carry out complex life cycles within the cells of their hosts. We have exploited a collection of gene deletion mutants developed by the Saccharomyces Genome Deletion Project to perform a functional genomics screen for host factors that influence the retrovirus-like Ty1 element in yeast. A total of 101 genes that presumably influence many different aspects of the Ty1 retrotransposition cycle were identified from our analysis of 4483 homozygous diploid deletion strains. Of the 101 identified mutants, 46 had significantly altered levels of Ty1 cDNA, whereas the remaining 55 mutants had normal levels of Ty1 cDNA. Thus, approximately half of the mutants apparently affected the early stages of retrotransposition leading up to the assembly of virus-like particles and cDNA replication, whereas the remaining half affected steps that occur after cDNA replication. Although most of the mutants retained the ability to target Ty1 integration to tRNA genes, 2 mutants had reduced levels of tRNA gene targeting. Over 25% of the gene products identified in this study were conserved in other organisms, suggesting that this collection of host factors can serve as a starting point for identifying host factors that influence LTR retroelements and retroviruses in other organisms. Overall, our data indicate that Ty1 requires a large number of cellular host factors to complete its retrotransposition cycle efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.