The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
Circadian rhythms are ubiquitous in eukaryotes, and co-ordinate numerous aspects of behaviour, physiology and metabolism, from sleep/wake cycles in mammals to growth and photosynthesis in plants1,2. This daily timekeeping is thought to be driven by transcriptional/translational feedback loops, whereby rhythmic expression of clock gene products regulates expression of associated genes in approximately 24-hour cycles. The specific transcriptional components differ between phylogenetic kingdoms3. The unicellular pico-eukaryotic alga, Ostreococcus tauri, possesses a naturally minimised clock, which includes many features that are shared with higher eukaryotes (plants), such as a central negative feedback loop that involves the morning-expressed CCA1 and evening-expressed TOC1 genes4. Given that recent observations in animals and plants have revealed prominent post-translational contributions to timekeeping5, a reappraisal of the transcriptional contribution to oscillator function is overdue. Here we show that non-transcriptional mechanisms are sufficient to sustain circadian timekeeping in the eukaryotic lineage, though they normally function in conjunction with transcriptional components. We identify oxidation of peroxiredoxin proteins as a transcription-independent rhythmic biomarker, which is also rhythmic in mammals6. Moreover we show that pharmacological modulators of the mammalian clockwork have the same effects on rhythms in Ostreococcus. Post-translational mechanisms, and at least one rhythmic marker, appear to be better conserved than transcriptional clock regulators. It is plausible that the oldest oscillator components are non-transcriptional in nature, as in cyanobacteria7, and are conserved across kingdoms.
SummaryThe circadian clock provides robust, ∼24 hr biological rhythms throughout the eukaryotes. The clock gene circuit in plants comprises interlocking transcriptional feedback loops, reviewed in [1], whereby the morning-expressed transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) repress the expression of evening genes, notably TIMING OF CAB EXPRESSION 1 (TOC1). EARLY FLOWERING 3 (ELF3) has been implicated as a repressor of light signaling to the clock [2, 3] and, paradoxically, as an activator of the light-induced genes CCA1 and LHY [4, 5]. We use cca1-11 lhy-21 elf3-4 plants to separate the repressive function of ELF3 from its downstream targets CCA1 and LHY. We further demonstrate that ELF3 associates physically with the promoter of PSEUDO-RESPONSE REGULATOR 9 (PRR9), a repressor of CCA1 and LHY expression, in a time-dependent fashion. The repressive function of ELF3 is thus consistent with indirect activation of LHY and CCA1, in a double-negative connection via a direct ELF3 target, PRR9. This mechanism reconciles the functions of ELF3 in the clock network during the night and points to further effects of ELF3 during the day.
The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show () regulates inflorescence architecture in bread wheat () by investigating lines that display a form of inflorescence branching known as "paired spikelets." We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for found to associate genetically with paired spikelet development in modern cultivars. We propose coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of could help increase wheat yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.