Nanoparticles have become an important utility in many areas of medical treatment such as targeted drug and treatment delivery as well as imaging and diagnostics. These advances require a complete understanding of nanoparticles' fate once placed in the body. Upon exposure to blood, proteins adsorb onto the nanoparticles surface and form a protein corona, which determines the particles' biological fate. This study reports on the protein corona formation from blood serum and plasma on spherical and rod‐shaped nanoparticles. These two types of mesoporous silica nanoparticles have identical chemistry, porosity, surface potential, and size in the y‐dimension, one being a sphere and the other a rod shape. The results show a significantly larger amount of protein attaching from both plasma and serum on the rod‐like particles compared to the spheres. Interrogation of the protein corona by liquid chromatography–mass spectrometry reveals shape‐dependent differences in the adsorption of immunoglobulins and albumin proteins from both plasma and serum. This study points to the need for taking nanoparticle shape into consideration because it can have a significant impact on the fate and therapeutic potential of nanoparticles when placed in the body.
Here we report the development of slef-sterilizing dissolving microneedles, a promising vehicle for vaccine and drug delivery.
Protein adsorption to biomaterials is critical in determining their suitability for specific applications, such as implants or biosensors. Here, we show that surface nanoroughness can be tailored to control the covalent binding of proteins to plasma-deposited polyoxazoline (PPOx). Nanoengineered surfaces were created by immobilizing gold nanoparticles varying in size and surface density on PPOx films. To keep the surface chemistry consistent while preserving the nanotopography, all substrates were overcoated with a nanothin PPOx film. Bovine serum albumin was chosen to study protein interactions with the nanoengineered surfaces. The results demonstrate that the amount of protein bound to the surface is not directly correlated with the increase in surface area. Instead, it is determined by nanotopography-induced geometric effects and surface wettability. A densely packed array of 16 and 38 nm nanoparticles hinders protein adsorption compared to smooth PPOx substrates, while it increases for 68 nm nanoparticles. These adaptable surfaces could be used for designing biomaterials where proteins adsorption is or is not desirable.
Chronic wounds are affecting increasingly larger portions of the general population and their treatment has essentially remained unchanged for the past century. This lack of progress is due to the complex problem that chronic wounds are simultaneously infected and inflamed. Both aspects need to be addressed together to achieve a better healing outcome. Hence, we hereby demonstrate that the stable nitroxide radical (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) can be plasma polymerized into smooth coatings (TEMPOpp), as seen via atomic force microscopy, X-ray photoelectron spectroscopy and ellipsometry.Upon contact with water, these coatings leach nitroxides into aqueous supernatant, as measured via EPR. We then exploited the known cell-signalling qualities of TEMPO to change the cellular behaviour of bacteria and human cells that come into contact with the surfaces. Specifically, the TEMPOpp coatings not only suppressed biofilm formation of the opportunistic bacterium Staphylococcus epidermidis but also dispersed already formed biofilm in a dose-dependent manner; a crucial aspect in treating chronic wounds that contain bacterial biofilm. Thus the coatings' microbiological efficacy correlated with their thickness and the thickest coating was the most efficient. Furthermore, this dose-dependent effect was mirrored in significant cytokine reduction of activated THP-1 macrophages for the four cytokines TNF-a, IL-1b, IL-6 and IP-10. At the same time, the THP-1 cells retained their ability to adhere and colonize the surfaces, as verified via SEM imaging. Thus, summarily, we have exploited the unique qualities of plasma polymerized TEMPO coatings in targeting both infection and inflammation simultaneously; demonstrating a novel alternative to how chronic wounds could be treated in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.