The xCELLigence system is a new technological approach that allows the real-time cell analysis of adherent tumor cells. To date, xCELLigence has not been able to monitor the growth or cytotoxicity of nonadherent cells derived from hematological malignancies. The basis of its technology relies on the use of culture plates with gold microelectrodes located in their base. We have adapted the methodology described by others to xCELLigence, based on the pre-coating of the cell culture surface with specific substrates, some of which are known to facilitate cell adhesion in the extracellular matrix. Pre-coating of the culture plates with fibronectin, compared to laminin, collagen, or gelatin, significantly induced the adhesion of most of the leukemia/lymphoma cells assayed (Jurkat, L1236, KMH2, and K562). With a fibronectin substrate, nonadherent cells deposited in a monolayer configuration, and consequently, the cell growth and viability were robustly monitored. We further demonstrate the feasibility of xCELLigence for the real-time monitoring of the cytotoxic properties of several antineoplastic agents. In order to validate this technology, the data obtained through real-time cell analysis was compared with that obtained from using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. This provides an excellent label-free tool for the screening of drug efficacy in nonadherent cells and discriminates optimal time points for further molecular analysis of cellular events associated with treatments, reducing both time and costs.
BackgroundPlacental growth factor (PlGF) induces angiogenesis and promotes tissue repair, and plasma PlGF levels change markedly during acute myocardial infarction (AMI). Currently, the impact of obstructive sleep apnea (OSA) in patients with AMI is a subject of debate. Our objective was to evaluate the relationships between PlGF levels and both the severity of acute coronary syndrome (ACS) and short-term outcomes after ACS in patients with and without OSA.MethodsA total of 538 consecutive patients (312 OSA patients and 226 controls) admitted for ACS were included in this study. All patients underwent polygraphy in the first 72 hours after hospital admission. The severity of disease and short-term prognoses were evaluated during the hospitalization period. Plasma PlGF levels were measured using an electrochemiluminescence immunoassay.ResultsPatients with OSA were significantly older and more frequently hypertensive and had higher BMIs than those without OSA. After adjusting for age, smoking status, BMI and hypertension, PlGF levels were significantly elevated in patients with OSA compared with patients without OSA (19.9 pg/mL, interquartile range: 16.6–24.5 pg/mL; 18.5 pg/mL, interquartile range: 14.7–22.7 pg/mL; p<0.001), and a higher apnea-hypopnea index (AHI) was associated with higher PlGF concentrations (p<0.003). Patients with higher levels of PlGF had also an increased odds ratio for the presence of 3 or more diseased vessels and for a Killip score>1, even after adjustment.ConclusionsThe results of this study show that in patients with ACS, elevated plasma levels of PlGF are associated with the presence of OSA and with adverse outcomes during short-term follow-up.Trial RegistrationClinicalTrials.gov NCT01335087
Study Objectives: Nucleosomes and cell-free double-stranded DNA (dsDNA) have been suggested as promising biomarkers in cell death-related diseases, such as acute coronary syndrome (ACS). Currently, the impact of obstructive sleep apnea (OSA) in patients with ACS is unclear. Our aim was to evaluate the relationship between OSA, dsDNA, and nucleosomes and to assess their potential implication in the development of ACS. Methods: Up to 549 patients were included in the study and divided into four groups (145 ACS; 290 ACS + OSA; 62 OSA; 52 controls). All patients underwent a sleep study, and serum concentrations of dsDNA and nucleosomes were measured. Results: Nucleosome and dsDNA levels were higher in patients with OSA than in controls (nucleosomes: 1.47 ± 0.88 arbitary units [AU] vs. 1.00 ± 0.33 AU; p < .001, dsDNA: 315.6 ± 78.0 ng/mL vs. 282.6 ± 55.4 ng/mL; p = .007). In addition, both biomarker levels were higher in patients with ACS than in non-ACS, independently of the presence of OSA. Conclusions: Both nucleosomes and dsDNA are increased in patients with OSA and might be related with the high cardiovascular risk seen in these patients. The extensive cell lysis during a myocardial infarction seems to be the major contributor to the high biomarker levels, and OSA does not seem to be implicated in such elevation when this acute event occurs. Clinical trial registration: NCT01335087 (clinicaltrials.gov)
OHCo interferes with many laboratory assays in an unpredictable way making some results invalid and confounding clinical decision making. We can detect and evaluate the degree of interference with the HI. We can still estimate real creatinine and lactate levels using the regression equation obtained in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.