The generation of biomaterials with adequate biomechanical and structural properties remains a challenge in tissue engineering and regenerative medicine. Earlier research has shown that nanostructuration and cross-linking techniques improved the biomechanical and structural properties of different biomaterials. Currently, uncompressed and nanostructured fibrin-agarose hydrogels (FAH and NFAH, respectively) have been used successfully in tissue engineering. The aim of this study was to investigate the possibility of improving the structural and biomechanical properties of FAH and NFAH by using 0.25% and 0.5% (v/v) glutaraldehyde (GA) as a cross-linker. These non-cross-linked and cross-linked hydrogels were subjected to structural, rheological and ex vivo biocompatibility analyses. Our results showed that GA cross-linking induced structural changes and significantly improved the rheological properties of FAH and NFAH. In addition, ex vivo biocompatibility analyses demonstrated viable cells in all conditions, although viability was more compromised when 0.5% GA was used. Our study demonstrates that it is possible to control fiber density and hydrogel porosity of FAH and NFAH by using nanostructuration or GA cross-linking techniques. In conclusion, hydrogels cross-linked with 0.25% GA showed promising structural, biochemical and biological properties for use in tissue engineering.
The generation of elastic cartilage substitutes for clinical use is still a challenge. In this study, we investigated the possibility of encapsulating human elastic cartilage-derived chondrocytes (HECDC) in biodegradable nanostructured fibrin-agarose hydrogels (NFAH). Viable HECDC from passage 2 were encapsulated in NFAH and maintained in culture conditions. Constructs were harvested for histochemical and immunohistochemical analyses after 1, 2, 3, 4 and 5 weeks of development ex vivo. Histological results demonstrated that it is possible to encapsulate HECDC in NFAH, and that HECDC were able to proliferate and form cells clusters expressing S-100 and vimentin. Additionally, histochemical and immunohistochemical analyses of the extracellular matrix (ECM) showed that HECDC synthetized different ECM molecules (type I and II collagen, elastic fibers and proteoglycans) in the NFAH ex vivo. In conclusion, this study suggests that NFAH can be used to generate biodegradable and biologically active constructs for cartilage tissue engineering applications. However, further cell differentiation, biomechanical and in vivo studies are still needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.