Natural selection can act on between-individual variation in cognitive abilities, yet evolutionary responses depend on the presence of underlying genetic variation. It is, therefore, crucial to determine the relative extent of genetic versus environmental control of these among-individual differences in cognitive traits to understand their causes and evolutionary potential. We investigated heritability of associative learning performance and of a cognitive judgement bias (optimism), as well as their covariation, in a captive pedigree-bred population of red junglefowl (, > 300 chicks over 5 years). We analysed performance in discriminative and reversal learning (two facets of associative learning), and cognitive judgement bias, by conducting animal models to disentangle genetic from environmental contributions. We demonstrate moderate heritability for reversal learning, and weak to no heritability for optimism and discriminative learning, respectively. The two facets of associative learning were weakly negatively correlated, consistent with hypothesized trade-offs underpinning individual cognitive styles. Reversal, but not discriminative learning performance, was associated with judgement bias; less optimistic individuals reversed a previously learnt association faster. Together these results indicate that genetic and environmental contributions differ among traits. While modular models of cognitive abilities predict a lack of common genetic control for different cognitive traits, further investigation is required to fully ascertain the degree of covariation between a broader range of cognitive traits and the extent of any shared genetic control.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
The world’s most numerous bird, the domestic chicken, and their wild ancestor, the red junglefowl, have long been used as model species for animal behaviour research. Recently, this research has advanced our understanding of the social behaviour, personality, and cognition of fowl, and demonstrated their sophisticated behaviour and cognitive skills. Here, we overview some of this research, starting with describing research investigating the well-developed senses of fowl, before presenting how socially and cognitively complex they can be. The realisation that domestic chickens, our most abundant production animal, are behaviourally and cognitively sophisticated should encourage an increase in general appraise and fascination towards them. In turn, this should inspire increased use of them as both research and hobby animals, as well as improvements in their unfortunately often poor welfare.
Intra-species contests are common in the animal kingdom and can have fitness consequences. Most research on what predicts contest outcome focuses on morphology, although differences in personality and cognition may also be involved. Supporting this, more proactive individuals often have dominant status, although the causality of this relationship is rarely investigated. Contest initiators often win; thus, individuals that are more proactive in their personality (e.g., more aggressive, risk-taking) or cognition (e.g., more optimistic, impulsive) may initiate contests more often. To investigate this, we assayed the behavior and cognition of sexually mature male and female red junglefowl (Gallus gallus), a species in which both sexes contest over social status, before staging intra-sexual contests. We confirm that contest initiators were more likely to win. In males, individuals that behaved more boldly in a novel arena test were more likely to initiate and win contests. Female initiators tended to be less active in novel object test, more aggressive in a restrained opponent test, and respond less optimistically in a cognitive judgement bias test, whereas the main predictor of whether a female would win a contest was whether she initiated it. These results suggest that behaviors attributed to proactive and reactive personalities, and-at least for female red junglefowl-optimism, can affect contest initiation and outcome. Therefore, within species, and depending on sex, different aspects of behavior and cognition may independently affect contest initiation and outcome. The generality of these findings, and their fitness consequences, requires further investigation. Significance statement In red junglefowl, we explored how behavior previously shown to describe personality, cognition, and affective state affected initiation and outcome of intra-sexual contests, by staging contests between sexually mature individuals previously assayed in behavioral and cognitive tests. In both sexes, contest initiators usually won. Bolder males were more likely to initiate and win contests. Female contests initiators were less active, more aggressive, and less optimistic. Our results suggest that personality and cognition could affect the initiation and outcome of contests and that how this occurs may differ between sexes.
Intra-species cognitive variation is commonly observed, but explanations for why individuals within a species differ in cognition are still understudied and not yet clear. Cognitive processes are likely influenced by genetic differences, with genes in the monoaminergic systems predicted to be important. To explore the potential role of these genes in association with individual variation in cognition, we exposed red junglefowl (Gallus gallus) chicks to behavioural assays measuring variation in learning (discriminative learning, reversal learning, and cognitive flexibility) and optimism (measured in a cognitive judgement bias test). Following this, we analysed prefrontal cortex gene expression of several dopaminergic and serotonergic genes in these chicks. Of our explored genes, serotonin receptor genes 5HT2A and 5HT2B, and dopaminergic receptor gene DRD1 were associated with measured behaviour. Chicks that had higher 5HT2A were less flexible in the reversal learning task, and chicks with higher 5HT2B also tended to be less cognitively flexible. Additionally, chicks with higher DRD1 were more optimistic, whilst chicks with higher 5HT2A tended to be less optimistic. These results suggest that the serotonergic and dopaminergic systems are linked to observed cognitive variation, and, thus, individual differences in cognition can be partially explained by variation in brain gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.