To facilitate the assessment of hazards and risk from volcanoes, we have created a comprehensive global database of Quaternary Large Magnitude Explosive Volcanic Eruptions (LaMEVE). This forms part of the larger Volcanic Global Risk Identification and Analysis Project (VOGRIPA), and also forms part of the Global Volcano Model (GVM) initiative (www.globalvolcanomodel.org). A flexible search tool allows users to select data on a global, regional or local scale; the selected data can be downloaded into a spreadsheet. The database is publically available online at www.bgs.ac. uk/vogripa and currently contains information on nearly 3,000 volcanoes and over 1,800 Quaternary eruption records. Not all volcanoes currently have eruptions associated with them but have been included to allow for easy expansion of the database as more data are found. Data fields include: magnitude, Volcanic Explosivity Index (VEI), deposit volumes, eruption dates, and rock type. The scientific community is invited to contribute new data and also alert the database manager to potentially incorrect data. Whilst the database currently focuses only on large magnitude eruptions, it will be expanded to include data specifically relating to the principal volcanic hazards (e.g. pyroclastic flows, tephra fall, lahars, debris avalanches, ballistics), as well as vulnerability (e.g. population figures, building type) to facilitate risk assessments of future eruptions.
The Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database contains data on 1,883 Quaternary eruption records of magnitude (M) 4 and above and is publically accessible online via the British Geological Survey. Spatial and temporal analysis of the data indicates that the record is incomplete and is thus biased. The recorded distribution of volcanoes is variable on a global scale, with three-quarters of all volcanoes with M≥4 Quaternary activity located in the northern hemisphere and a quarter within Japan alone. The distribution of recorded eruptions does not strictly follow the spatial distribution of volcanoes and has distinct intra-regional variability, with about 40% of all recorded eruptions having occurred in Japan, reflecting in part the country's efforts devoted to comprehensive volcanic studies. The number of eruptions in LaMEVE decreases with increasing age, exemplified by the recording of 50% of all known Quaternary eruptions during the last 20,000 years. Historical dating is prevalent from 1450 AD to the present day, substantially improving record completeness. The completeness of the record also improves as magnitude increases. This is demonstrated by the calculation of the median time, T 50 , for eruptions within given magnitude intervals, where 50% of eruptions are older than T 50 : T 50 ranges from 5,070 years for M4-4.9 eruptions to 935,000 years for M≥8 eruptions. T 50 follows a power law fit, suggesting a quantifiable relationship between eruption size and preservation potential of eruptive products. Several geographic regions have T 50 ages of <250 years for the smallest (~M4) eruptions reflecting substantial levels of under-recording. There is evidence for latitudinal variation in eruptive activity, possibly due to the effects of glaciation. A peak in recorded activity is identified at 11 to 9 ka in high-latitude glaciated regions. This is absent in non-glaciated regions, supporting the hypothesis of increased volcanism due to ice unloading around this time. Record completeness and consequent interpretation of record limitations are important in understanding volcanism on global to local scales and must be considered during rigorous volcanic hazard and risk assessments. The study also indicates that there need to be improvements in the quality of data, including assessment of uncertainties in volume estimates.
Science Hunters is an outreach project which employs the computer game Minecraft to engage children with scientific learning and research through school visits, events, and extracurricular clubs. We principally target children who may experience barriers to accessing Higher Education, including low socioeconomic status, being the first in their family to attend university, and disability (including Special Educational Needs). The Minecraft platform encourages teamwork and makes science learning accessible and entertaining for children, irrespective of background. We employ a flexible approach that adapts to the needs of the users. More than 8000 children have been engaged in the first four years, with overwhelmingly positive feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.