Estrogen receptor A (ERA) plays a key role in mammary gland development and is implicated in breast cancer through the transcriptional regulation of genes linked to proliferation and apoptosis. We previously reported that hexamethylene bisacetamide inducible protein 1 (HEXIM1) inhibits the activity of ligand-bound ERA and bridges a functional interaction between ERA and positive transcription elongation factor b (P-TEFb). To examine the consequences of a functional HEXIM1-ERA-P-TEFb interaction in vivo , we generated MMTV/HEXIM1 mice that exhibit mammary epithelial-specific and doxycycline-inducible expression of HEXIM1. Increased HEXIM1 expression in the mammary gland decreased estrogen-driven ductal morphogenesis and inhibited the expression of cyclin D1 and serine 2 phosphorylated RNA polymerase II (S2P RNAP II). In addition, increased HEXIM1 expression in MCF-7 cells led to a decrease in estrogen-induced cyclin D1 expression, whereas down-regulation of HEXIM1 expression led to an enhancement of estrogen-induced cyclin D1 expression. Studies on the mechanism of HEXIM1 regulation on estrogen action indicated a decrease in estrogen-stimulated recruitment of ERA, P-TEFb, and S2P RNAP II to promoter and coding regions of ERA-responsive genes pS2 and CCND1 with increased HEXIM1 expression in MCF-7 cells. Notably, increased HEXIM1 expression decreased only estrogen-induced P-TEFb activity. Whereas there have been previous reports on HEXIM1 inhibition of P-TEFb activity, our studies add a new dimension by showing that E 2 /ER is an important regulator of the HEXIM1/P-TEFb functional unit in breast cells. Together, these studies provide novel insight into the role of HEXIM1 and ERA in mammary epithelial cell function. [Cancer Res 2008;68(17):7015-24]
We previously reported that antiestrogen-liganded estrogen receptor b (ERb) transcriptionally activates the major detoxifying enzyme quinone reductase (QR) (NAD(P)H:-quinone oxidoreductase). Further studies on the functional role of ERb-mediated upregulation of antioxidative enzymes indicated protective effects against estrogeninduced oxidative DNA damage (ODD). We now report on in vivo and in vitro studies that show that ERbmediated upregulation of QR are involved in the protection against estrogen-induced mammary tumorigenesis. Using the August Copenhagen Irish (ACI) model of estrogen-induced carcinogenesis, we observed that increased ODD and decreased QR expression occur early in the process of estrogen-induced mammary tumorigenesis. Prevention of ACI mammary gland tumorigenesis by tamoxifen was accompanied by decreased ODD and increased QR levels. These correlative findings were supported by our findings that downregulation of QR levels led to increased levels of estrogen quinone metabolites and enhanced transformation potential of 17b-estradiol treated MCF10A non-tumorigenic breast epithelial cells. Concurrent expression of ERb and treatment with 4-hydroxytamoxifen decreased tumorigenic potential of these MCF10A cells. We conclude that upregulation of QR, through induction by tamoxifen, can inhibit estrogen-induced ODD and mammary cell tumorigenesis, representing a possible novel mechanism of tamoxifen prevention against breast cancer.
Recently, we found that mutation of the C-terminus of transcription factor Hexamethylene bisacetamide inducible protein 1 (HEXIM1) in mice leads to abnormalities in cardiovascular development due to aberrant vascular endothelial growth factor (VEGF) expression. HEXIM1 regulation of some genes has also been shown to be positive transcription elongation factor b (P-TEFb)-dependent. However, it is not known whether HEXIM1 regulates VEGF in the mammary gland. We demonstrate that HEXIM1 regulates estrogen-induced VEGF transcription via inhibition of Estrogen Receptor alpha recruitment to the VEGF promoter in a P-TEFb-independent manner in MCF-7 cells. Under hypoxic conditions, HEXIM1 inhibits estrogen-induced Hypoxia-inducible factor-1 alpha (HIF-1α) protein expression and recruitment of HIF-1α to the hypoxia response element in the VEGF promoter. In the mouse mammary gland, increased HEXIM1 expression decreased estrogen-driven VEGF and HIF-1α expression. Conversely, a mutation in the C-terminus of HEXIM1 (HEXIM11-312) led to increased VEGF and HIF-1α expression and vascularization in mammary glands of heterozygous HEXIM11-312 mice when compared to their wild-type littermates. Additionally, HEXIM11-312 mice have a higher incidence of carcinogen-induced mammary tumors with increased vascularization, suggesting an inhibitory role for HEXIM1 during angiogenesis. Taken together, our data provide evidence to suggest a novel role for HEXIM1 in cancer progression.
Quinone reductase (QR) is a phase II detoxification enzyme that plays an important role in detoxifying quinones and may help maintain the antioxidant function of the cell. We have previously observed that QR is up-regulated by anti-oestrogens, but not oestrogen, in breast cancer cells via ERbeta (oestrogen receptor beta) transactivation. Such QR induction appears to protect breast cells against oestrogen-induced oxidative DNA damage, most likely by reducing reactive oestrogen metabolites termed catecholestrogen-quinones back to the hydroxy-catecholestrogens which may be conjugated. We now report that the phytoestrogens biochanin A, genistein and resveratrol also up-regulate QR expression in breast cancer cells. We observe that regulation can occur at the transcriptional level, preferentially through ERbeta transactivation at the electrophile response element of the QR gene promoter. By chromatin immunoprecipitation analysis, we show binding of ERalpha and ERbeta to the QR promoter, with increased ERbeta binding in the presence of resveratrol. Functional studies show that biochanin A and resveratrol, but not genistein, can significantly protect against oestrogen-induced oxidative DNA damage in breast cancer cells. Antisense technology was used to determine whether such protection was dependent on ERbeta or QR. Our results with resveratrol are consistent with our hypothesis that the protective ability of resveratrol is partially dependent on the presence of ERbeta and QR. In conclusion, we postulate that phytoestrogen-mediated induction of QR may represent an additional mechanism for breast cancer protection, although the effects may be specific for a given phytoestrogen.
In the presence of ERβ, trans-hydroxytamoxifen (TOT) protects cells against 17β-estradiol(E2)-induced oxidative DNA damage (ODD) and this correlates with increased expression of the antioxidative enzyme quinone reductase (QR). Here, we investigate the molecular mechanism responsible for ERβ-mediated protection against ODD. We observe constitutive interaction between ERβ and the novelprote in hPMC2. Using a combination of breast epithelial cell lines that are either positive or negative for ERα, we demonstrate TOT-dependent recruitment of both ERβ and hPMC2 to the EpRE (electrophile response element)-regulated antioxidative enzyme QR. We further demonstrate TOT-dependent corecruitment of the coactivators Nrf2, PARP-1 (poly (ADP-ribose) polymerase 1) and topoisomerase IIβ, both in the presence and absence of ERα. However, absence of either ERβ or hPMC2 results in nonrecruitment of PARP-1 and topoisomerase IIβ, loss of antioxidative enzyme induction and attenuated protection against ODD by TOT even in the presence of Nrf2 and ERα. These findings indicate minor role for Nrf2 and ERα in TOT-dependent antioxidative gene regulation. However, downregulation of PARP-1 attenuates TOT-dependent antioxidative gene induction. We conclude that ERβ and hPMC2 are required for TOT-dependent recruitment of coactivators such as PARP-1 to the EpRE resulting in the induction of antioxidative enzymes and subsequent protection against ODD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.