Magnetic properties of superparamagnetic iron oxide nanoparticles are controlled mainly by their particle size and by their particle size distribution. Magnetic properties of multi-core iron oxide nanoparticles, often called iron oxide nanoflowers (IONFs), are additionally affected by the interaction of magnetic moments between neighboring cores. The knowledge about the hierarchical structure of IONFs is therefore essential for understanding the magnetic properties of IONFs. In this contribution, the architecture of multi-core IONFs was investigated using correlative multiscale transmission electron microscopy (TEM), X-ray diffraction and dynamic light scattering. The multiscale TEM measurements comprised low-resolution and high-resolution imaging as well as geometric phase analysis. The IONFs contained maghemite with the average chemical composition $$\gamma$$
γ
-Fe$$_{2.72\pm 0.02}$$
2.72
±
0.02
O$$_4$$
4
. The metallic vacancies located on the octahedral lattice sites of the spinel ferrite structure were partially ordered. Individual IONFs consisted of several cores showing frequently a specific crystallographic orientation relationship between direct neighbors. This oriented attachment may facilitate the magnetic alignment within the cores. Individual cores were composed of partially coherent nanocrystals having almost the same crystallographic orientation. The sizes of individual constituents revealed by the microstructure analysis were correlated with the magnetic particle sizes that were obtained from fitting the measured magnetization curve by the Langevin function.
Magnetic properties of superparamagnetic iron oxide nanoparticles are controlled mainly by their particle size and by their particle size distribution. Magnetic properties of multi-core iron oxide nanoparticles, often called iron oxide nanoflowers (IONFs), are additionally affected by the interaction of magnetic moments between neighboring cores. The knowledge about the hierarchical structure of IONFs is therefore essential for understanding the magnetic properties of IONFs. In this contribution,the architecture of multi-core IONFs was investigated using correlative multiscale transmission electron microscopy (TEM), X-ray diffraction and dynamic light scattering. The multiscale TEM measurements comprised low-resolution and high-resolution imaging as well as geometric phase analysis. The IONFs contained maghemite with the average chemical composition γ-Fe2.72±0.02O4. The metallic vacancies located on the octahedral lattice sites of the spinel ferrite structure were partially ordered. Individual IONFs consisted of several cores showing frequently a specific crystallographic orientation relationship between direct neighbors. This oriented attachment may facilitate the magnetic alignment within the cores. Individual cores were composed of partially coherent nanocrystals having almost the same crystallographic orientation. The sizes of individual constituents revealed by the microstructure analysis were correlated with the magnetic particle sizes that were obtained from fitting the measured magnetization curve by the Langevin function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.