Sex differences in the brain are caused by differences in gonadal secretions: higher levels of testosterone during fetal and neonatal life cause the male brain to develop differently than the female brain. In contrast, genes encoded on the sex chromosomes are not thought to contribute directly to sex differences in brain development, even though male (XY) cells express Y-chromosome genes that are not present in female (XX) cells, and XX cells may have a higher dose of some X-chromosome genes. Using mice in which the genetic sex of the brain (XX versus XY) was independent of gonadal phenotype (testes versus ovaries), we found that XY and XX brain cells differed in phenotype, indicating that a brain cell's complement of sex chromosomes may contribute to its sexual differentiation.
The well-established finding that substantial confusion and misconceptions about evolution and natural selection persist after college instruction suggests that these courses neither foster accurate mental models of evolution's mechanisms nor instill an appreciation of evolution's centrality to an understanding of the living world. Our essay explores the roles that introductory biology courses and textbooks may play in reinforcing undergraduates' preexisting, faulty mental models of the place of evolution in the biological sciences. Our content analyses of the three best-selling introductory biology textbooks for majors revealed the conceptual segregation of evolutionary information. The vast majority of the evolutionary terms and concepts in each book were isolated in sections about evolution and diversity, while remarkably few were employed in other sections of the books. Standardizing the data by number of pages per unit did not alter this pattern. Students may fail to grasp that evolution is the unifying theme of biology because introductory courses and textbooks reinforce such isolation. Two goals are central to resolving this problem: the desegregation of evolution as separate ''units'' or chapters and the active integration of evolutionary concepts at all levels and across all domains of introductory biology.
Pacific salmon (genus Oncorhynchus) exhibit an interesting and uncommon life-history pattern that combines semelparity, anadromy, and navigation (homing). During smoltification, young salmon imprint on the chemical composition of their natal stream water (the home-stream olfactory bouquet or "HSOB"); they then migrate to the ocean where they spend a few years feeding prior to migrating back to their natal freshwater stream to spawn. Upstream migration is guided by the amazing ability to discriminate between the chemical compositions of different stream waters and thus identify and travel to their home-stream. Pacific salmon demonstrate marked somatic and neural degeneration changes during home-stream migration and at the spawning grounds. The appearance of these pathologies is correlated with a marked elevation in plasma cortisol levels. While the mechanisms of salmonid homing are not completely understood, it is known that adult salmon continuously utilize two of their primary sensory systems, olfaction and vision, during homing. Olfaction is the primary sensory system involved in freshwater homing and "HSOB" recognition, and will be emphasized here. Previously, we proposed that the increase in plasma cortisol during Pacific salmon home-stream migration is adaptive because it enhances the salmon's ability to recall the imprinted memory of the "HSOB" (Carruth, 1998; Carruth et al., 2000b). Elevated plasma concentrations of cortisol could prime the hippocampus or other olfactory regions of the brain to recall this memory and, therefore, aid in directing the fish to their natal stream. Thus, specific responses of salmon to stressors could enhance reproductive success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.