Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III-V semiconductor compounds and/or electro-optic materials such as lithium niobate. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only approximately 20 MHz (refs 10, 11), although it has been predicted theoretically that a approximately 1-GHz modulation frequency might be achievable in some device structures. Here we describe an approach based on a metal-oxide-semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.
An electrically pumped light source on silicon is a key element needed for photonic integrated circuits on silicon. Here we report an electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding. This laser runs continuous-wave (c.w.) with a threshold of 65 mA, a maximum output power of 1.8 mW with a differential quantum efficiency of 12.7 % and a maximum operating temperature of 40 degrees C. This approach allows for 100's of lasers to be fabricated in one bonding step, making it suitable for high volume, low-cost, integration. By varying the silicon waveguide dimensions and the composition of the III-V layer, this architecture can be extended to fabricate other active devices on silicon such as optical amplifiers, modulators and photo-detectors.
No abstract
The possibility of light generation and/or amplification in silicon has attracted a great deal of attention for silicon-based optoelectronic applications owing to the potential for forming inexpensive, monolithic integrated optical components. Because of its indirect bandgap, bulk silicon shows very inefficient band-to-band radiative electron-hole recombination. Light emission in silicon has thus focused on the use of silicon engineered materials such as nanocrystals, Si/SiO2 superlattices, erbium-doped silicon-rich oxides, surface-textured bulk silicon and Si/SiGe quantum cascade structures. Stimulated Raman scattering (SRS) has recently been demonstrated as a mechanism to generate optical gain in planar silicon waveguide structures. In fact, net optical gain in the range 2-11 dB due to SRS has been reported in centimetre-sized silicon waveguides using pulsed pumping. Recently, a lasing experiment involving silicon as the gain medium by way of SRS was reported, where the ring laser cavity was formed by an 8-m-long optical fibre. Here we report the experimental demonstration of Raman lasing in a compact, all-silicon, waveguide cavity on a single silicon chip. This demonstration represents an important step towards producing practical continuous-wave optical amplifiers and lasers that could be integrated with other optoelectronic components onto CMOS-compatible silicon chips.
In this paper we elaborate on our work in the field of mid-infrared photonic integrated circuits for spectroscopic sensing applications. We discuss the use of silicon-based photonic integrated circuits for this purpose and detail how a variety of optical functions in the mid-infrared besides passive waveguiding and filtering can be realized, either relying on nonlinear optics or on the integration of other materials such as GaSb-based compound semiconductors, GeSn epitaxy and PbS colloidal nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.