An electrically pumped light source on silicon is a key element needed for photonic integrated circuits on silicon. Here we report an electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding. This laser runs continuous-wave (c.w.) with a threshold of 65 mA, a maximum output power of 1.8 mW with a differential quantum efficiency of 12.7 % and a maximum operating temperature of 40 degrees C. This approach allows for 100's of lasers to be fabricated in one bonding step, making it suitable for high volume, low-cost, integration. By varying the silicon waveguide dimensions and the composition of the III-V layer, this architecture can be extended to fabricate other active devices on silicon such as optical amplifiers, modulators and photo-detectors.
A novel laser that utilizes a silicon waveguide bonded to AlGaInAs quantum wells is demonstrated. This wafer scale fabrication approach allows the optical waveguide to be defined by CMOS-compatible silicon processing while optical gain is provided by III-V materials. The AlGaInAs quantum well structure is bonded to the silicon wafer using low temperature oxygen plasma-assisted wafer bonding. The optically pumped 1538 nm laser has a pulsed threshold of 30 mW and an output power of 1.4 mW.
We report a waveguide photodetector utilizing a hybrid waveguide structure consisting of AlGaInAs quantum wells bonded to a silicon waveguide. The light in the hybrid waveguide is absorbed by the AlGaInAs quantum wells under reverse bias. The photodetector has a fiber coupled responsivity of 0.31 A/W with an internal quantum efficiency of 90 % over the 1.5 mum wavelength range. This photodetector structure can be integrated with silicon evanescent lasers for power monitors or integrated with silicon evanescent amplifiers for preamplified receivers.
Recently, AlGaInAs-silicon evanescent lasers have been demonstrated as a method of integrating active photonic devices on a silicon based platform. This hybrid waveguide architecture consists of III-V quantum wells bonded to silicon waveguides. The self aligned optical mode leads to a bonding process that is manufacturable in high volumes. Here give an overview of a racetrack resonator laser integrated with two photo-detectors on the hybrid AlGaInAs-silicon evanescent device platform. Unlike previous demonstrations of hybrid AlGaInAs-silicon evanescent lasers, we demonstrate an on-chip racetrack resonator laser that does not rely on facet polishing and dicing in order to define the laser cavity. The laser runs continuous-wave (c.w.) at 1590 nm with a threshold of 175 mA, has a maximum total output power of 29 mW and a maximum operating temperature of 60 C. The output of this laser light is directly coupled into a pair of on chip hybrid AlGaInAs-silicon evanescent photodetectors used to measure the laser output.Keywords: Silicon evanescent laser, Silicon photonics, integration, photodetector, semiconductor laser IntroductionSilicon photonics has received a lot of attention by researchers with the hopes to leverage the low cost manufacturing infrastructure of CMOS photonics for applications such as chip to chip and board to board interconnects [1][2][3][4]. This work has been focused on the building blocks of photonic communication systems such as lasers [5][6][7][8], modulators, photodetectors, and others [9][10][11][12][13][14][15]. Our work has been focused on developing a hybrid integration platform that allows for III-V material functionality, such as light amplification and detection, to be utilized on silicon waveguide based devices. This platform consists of a III-V epitaxial structure bonded to a silicon waveguide to make a hybrid waveguide such that its optical mode lies primarily in the silicon region with a small portion of the mode overlapping the quantum wells of the III-V structure for optical gain. The optical mode characteristics are predominately defined by the silicon waveguide processing. Bonding can be performed without critical alignment. The remaining critical alignment steps, such as the definition of electrical current injection channels, utilize standard lithographic techniques leading to a high volume, low cost, solution for active devices on silicon. The first hybrid laser demonstration relied on the dicing and polishing of straight hybrid waveguides to define a Fabry-Perot laser cavity [16]. Here we review a monolithic hybrid AlGaInAs silicon evanescent laser based on a racetrack-resonator-topography. The laser runs continuous-wave (c.w.) with a threshold of 175 mA, a maximum total output power of 29 mW and maximum operating temperature of 60 oC. Moreover we report the integration of this laser with a hybrid AlGaInAs-silicon evanescent photodetector used to measure the laser output [17].
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.