Dementia with Lewy bodies (DLB) is pathologically characterized by the presence of ␣-synuclein-containing
11 C-Pittsburgh Compound B ( 11 C-PiB) PET has demonstrated significantly higher PiB retention in the gray matter of Alzheimer disease (AD) patients than in healthy controls (HCs). PiB is similarly retained within the white matter of HC and AD brains. Although the specificity of PiB for Ab plaques in gray matter has been well described, the nature of PiB binding to white matter remains unclear. In this study, we characterized the binding of PiB to human white matter homogenates. Methods: In vitro binding studies were conducted using 3 H-PiB (0.1-500 nM) and white matter brain homogenates (100 mg) from 3 AD patients and 3 HCs. Nonspecific binding was determined using PiB (1 mM). White matter from the same patients was also analyzed by immunofluorescence/immunohistochemistry (IF/IHC) microscopy and Western blotting for Ab expression. White matter kinetics were also characterized in vivo through 11 C-PiB PET studies in 27 HCs and 34 patients with dementia. IF/IHC experiments were conducted on 1 postmortem patient with dementia, to compare with the 11 C-PiB distribution volume ratio data acquired 23 mo earlier. Results: In vitro saturation studies indicated that 3 HPiB binds nonspecifically to white matter brain homogenates. PiB fluorescence staining of AD and HC brain sections was consistent with absence of Ab in IHC staining. Higher gray matterto-white matter ratios were observed in IHC images than in 11 C-PiB PET images. Conclusion: These studies suggest that PiB binding to white matter is mainly nonsaturable and nonspecific and that PiB retention in the 11 C-PiB PET studies is largely attributable to slower PiB white matter kinetics.
The keratinocyte growth factor receptor (KGFR)/fibroblast growth factor receptor 2b is activated by high-affinityspecific interaction with two different ligands, keratinocyte growth factor (KGF)/fibroblast growth factor (FGF)7 and FGF10/KGF2, which are characterized by an opposite requirement of heparan sulfate proteoglycans and heparin for binding to the receptor. We investigated here the possible different endocytic trafficking of KGFR, induced by the two ligands. Immunofluorescence and immunoelectron microscopy analysis showed that KGFR internalization triggered by either KGF or FGF10 occurs through clathrincoated pits. Immunofluorescence confocal microscopy using endocytic markers as well as tumor susceptibility gene 101 (TSG101) silencing demonstrated that KGF drives KGFR to the degradative pathway, while FGF10 targets the receptor to the recycling endosomes. Biochemical analysis showed that KGFR is ubiquitinated and degraded after KGF treatment but not after FGF10 treatment, and that the alternative fate of KGFR might depend on the different ability of the receptor to phosphorylate the fibroblast growth factor receptor substrate 2 (FRS2) substrate and to recruit the ubiquitin ligase c-Cbl. The recycling endocytic pathway followed by KGFR upon FGF10 stimulation correlates with the higher mitogenic activity exerted by this ligand on epithelial cells compared with KGF, suggesting that the two ligands may play different functional roles through the regulation of the receptor endocytic transport.
Autophagy is the main cellular pathway for degradation of long-lived proteins and organelles and regulates cell fate in response to stress. Beclin 1 is a key regulator of this process. In some settings autophagy and apoptosis seem to be interconnected. Recent reports indicate that fibroblasts in idiopathic pulmonary fibrosis (IPF) acquire resistance to apoptosis. Here, we examined the expression of beclin 1, and of the anti apoptotic protein Bcl-2 in human IPF fibroblasts using immunohistochemistry and molecular biology in bioptic sections, in primary cultures of fibroblasts taken from patients with IPF and in fibroblast cell lines. Expression of beclin 1 in fibroblasts from IPF was down-regulated in comparison with fibroblasts from normal lungs while the anti-apoptotic protein Bcl-2 expression was over-expressed. Treatment of fibroblast cell cultures with cisplatin induced a significant increase in beclin 1 and caspase 3 protein levels but a reduction in Bcl-2 expression. These observations were confirmed by the analysis of acid compartments and transmission electron microscopy. Our results demonstrate a modified expression of the apoptotic beclin 1 Bcl-2 proteins in human IPF fibroblasts suggesting the existence of an autophagy/apoptosis system dysfunction.
UVB exposure of epidermal cells is known to trigger early and late molecular pathways dependent on receptor tyrosine kinases and reactive oxygen species (ROS). We have recently reported that UVB irradiation induces tyrosine phosphorylation, kinase activation, and internalization of the receptor for the keratinocyte growth factor (KGFR), a paracrine mediator of epithelial growth, differentiation, and survival. Here we analyzed in more detail the UVB-induced endocytic pathway of KGFR and the role of KGFR activation and internalization in regulating UVB-promoted apoptosis and cell cycle arrest. Immunogold electron microscopy and confocal analysis revealed that the UVB-induced endocytosis of KGFR occurs through clathrin-coated pits and that the internalized receptors are sorted to the degradative route and reach the lysosomal compartment with a timing similar to that induced by their ligand KGF. Treatment with the anti-oxidant N-acetylcysteine inhibited KGFR endocytosis, suggesting that the receptor internalization is mediated by the intracellular production of ROS. The ligand-independent KGFR endocytic pathway induced by UVB requires receptor kinase activity and tyrosine phosphorylation and involves transient receptor ubiquitination. Inhibition of KGFR activity reduces both the KGF-mediated proliferative response and the UVB-promoted apoptotic cell death, indicating a different effect of ligand-induced and UVB-induced KGFR triggering. In addition, receptor internalization leads to protection from apoptosis caused by UVB exposure. Finally, we compared directly the behavior of KGFR with that of the epidermal growth factor receptor (EGFR) upon UVB exposure. Surprisingly, biochemical and immunofluorescence analysis showed that EGFR, differently from KGFR, does not undergo UVB-induced tyrosine phosphorylation and internalization. Taken together, our results suggest a differential role of KGFR and EGFR in the response of epidermal cells to UVB possibly because KGFR endocytosis could be crucial for attenuation of survival signals in the suprabasal layers of human skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.