Flavonoids are a large group of polyphenolic compounds, which are ubiquitously expressed in plants. They are grouped according to their chemical structure and function into flavonols, flavones, flavan-3-ols, anthocyanins, flavanones and isoflavones. Many of flavonoids are found in fruits, vegetables and beverages. Flavonoids have been demonstrated to have advantageous effects on human health because their anti-allergic, anti-inflammatory, anti-platelet aggregation, anti-tumor and anti-oxidant behavior. This report reviews the current knowledge on the molecular mechanisms of action of flavonoids as anti-inflammatory agents and also discusses the relevant patents.
The survival rate of head and neck squamous cell carcinomas (HNSCC) patients has not considerably changed over the last two decades. Polyphenols inhibit the growth of cancer cells. We determined whether the combination of Resveratrol (RES) and Curcumin (CUR) enhanced their in vitro and in vivo antitumor activities on HNSCC cell lines compared to the single compounds. We provide evidence that RES potentiated the apoptotic effect and reduced the IC50 of CUR on HNSCC cell lines. The model of compounds interaction indicated the onset of an additive effect of the two compounds compared to the single treatment after decrease of their concentrations. RES+CUR compared to CUR increased the PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of LC3 II simultaneously with the formation of autophagic vacuoles. RES and CUR induced cytoplasmic NF-κB accumulation. RES+CUR administrations were safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) more efficiently than CUR. Overall, combinations of CUR and RES was more effective in inhibiting in vivo and in vitro cancer growth than the treatment with CUR. Additional studies will be needed to define the therapeutic potential of these compounds in combination.
Severe mitochondria deficiency leads to a number of devastating degenerative disorders, yet, mild mitochondrial dysfunction in different species, including the nematode Caenorhabditis elegans, can have pro-longevity effects. This apparent paradox indicates that cellular adaptation to partial mitochondrial stress can induce beneficial responses, but how this is achieved is largely unknown. Complete absence of frataxin, the mitochondrial protein defective in patients with Friedreich's ataxia, is lethal in C. elegans, while its partial deficiency extends animal lifespan in a p53 dependent manner.In this paper we provide further insight into frataxin control of C. elegans longevity by showing that a substantial reduction of frataxin protein expression is required to extend lifespan, affect sensory neurons functionality, remodel lipid metabolism and trigger autophagy. We find that Beclin and p53 genes are required to induce autophagy and concurrently reduce lipid storages and extend animal lifespan in response to frataxin suppression. Reciprocally, frataxin expression modulates autophagy in the absence of p53. Human Friedreich ataxia-derived lymphoblasts also display increased autophagy, indicating an evolutionarily conserved response to reduced frataxin expression.In sum, we demonstrate a causal connection between induction of autophagy and lifespan extension following reduced frataxin expression, thus providing the rationale for investigating autophagy in the pathogenesis and treatment of Friedreich's ataxia and possibly other human mitochondria-associated disorders.
The development of head and neck squamous cell carcinomas (HNSCCs) is a multistep process progressing from precancerous lesions to highly malignant tumors. A critical role in HNSCCs development and progression is played by EGFR family members including EGFR and ErbB2. The aim of this study was to investigate the effect of apigenin, a low molecular weight flavonoid contained in fruits and vegetables, on growth and survival and on EGFR/ErbB2 signaling in cell lines derived from HNSCCs of the tongue (CAL-27, SCC-15) or pharynx (FaDu). Using sulforhodamine B assay, FACS analysis and activated caspase-3 detection by immunofluorescence, we here demonstrate that apigenin dose-dependently inhibits survival and induces apoptosis of HNSCC cells. Further, by performing western blotting with antibodies specific for phosphorylated EGFR, ErbB2, Erk1/2 and Akt we demonstrate that apigenin reduces ligand-induced phosphorylation of EGFR and ErbB2 and impairs their downstream signaling. On the whole, our results suggest that apigenin properties might be exploited for chemoprevention and/or therapy of head and neck carcinomas.
The presence of lymph node metastases is one of the most important prognostic indicators in head and neck squamous cell carcinomas (HNSCCs). An alteration of the E-cadherin-catenins complex and EGFR is essential for the invasiveness of cancer cells. Caveolin-1, the major structural protein of the caveolae, represents a scaffolding molecule for several signaling proteins including EGFR. Although caveolin-1 has been shown to play a role in inducing the invasive phenotype of cancer cells, its role appears to be cell-type specific and for some tumors it has not been defined yet. In this study we used 57 HNSCC specimens to investigate whether the abnormal expression of caveolin-1 was associated with the derangement of the E-cadherin-catenins complex and with the overexpression of ErbB receptors. We demonstrate that in HNSCCs caveolin-1 overexpression is associated with the simultaneous abnormal expression of at least one member of the E-cadherin/α-β catenins complex and multiple ErbB receptors as well as with lymph node metastases. We also demonstrate that chronic stimulation of a human hypopharyngeal carcinoma cell line (FaDu) with EGF induced the internalization of β-catenin and caveolin-1 and their co-localization with EGFR. Moreover, EGF treatment induced an increased physical interaction between EGFR/β-catenin/caveolin-1 and between E-cadherin/β-catenin/caveolin-1. These molecular events were associated with an increased directional motility of FaDu cells in vitro. These findings may provide new insight into the biology of HNSCC progression and help to identify subgroups of primary HNSCCs with a more aggressive behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.