Local perturbations in complex oxides such as domain walls 1,2 , strain 3,4 and defects 5,6 are of interest because they can modify the conduction or the dielectric and magnetic response and even promote phase transitions. Here we show that the interaction between different types of local perturbations in oxide thin films is an additional source of functionality. Taking SrMnO 3 as a model system, we use nonlinear optics to verify the theoretical prediction that strain induces a polar phase, and density functional theory to show that strain simultaneously increases the concentration of oxygen vacancies. These vacancies couple to the polar domain walls where they establish an electrostatic barrier to electron migration. The result 2 is a state with locally structured room-temperature conductivity consisting of conducting nanosized polar domains encased by insulating domain boundaries, which we resolve using scanning probe microscopy. Our "nanocapacitor" domains can be individually charged, suggesting stable capacitance nanobits with a potential for information storage technology.At first we verify the occurrence of strain-induced polar order in SrMnO 3 thin films.Motivated by the search for novel multiferroic materials, which combine magnetic and ferroelectric orders in the same phase, density functional theory (DFT) predicted the occurrence of ferroelectricity in the perovskite-structure alkaline-earth manganites at larger-than-equilibrium lattice parameters 7,8,9 . For bulk SrMnO 3 this prediction was confirmed by partial substitution of Sr by Ba which induces negative chemical pressure and leads to a polar state 10 . According to DFT, epitaxial SrMnO 3 films should develop a polarisation along one of the pseudocubic <110> axes under >1% epitaxial tensile strain 8 .20-nm films of single-phase SrMnO 3 were grown using pulsed laser deposition on (001)-oriented (LaAlO 3 ) 0.3 (Sr 2 AlTaO 6 ) 0.7 (LSAT) with 1.7% tensile strain (see Methods). We characterised the strain state of the films using scanning transmission electron microscopy (STEM) and X-ray and electron diffraction. Figure 1a shows a cross-sectional STEM image evidencing the high quality of the films on the atomic scale with a sharp SrMnO 3 /LSAT (001) interface. The reciprocal space map in Fig. 1a verifies that the films are tetragonal and coherently strained. The electron diffraction In the anisotropy plot in Fig. 1c we present the optical polarisation analysis of the SHG signal obtained on a test area of 0.1 mm 2 . We fitted the angular dependence of the SHG signal by assuming a distribution of four polar domain states denoted as P 1+ , P 1− , P 2+ , P 2− . The indices refer to the orientation of the polar axis according to 1 ± ↔ ±[110] and 2 ± ↔ ±[1 10], see Fig. 1c. The coincidence of the measured data and the fit is excellent with a fitted ratio r = P 1 /P 2 = 0.53 in the population of P 1 -and P 2 -type domain states (r varied between different test areas). In contrast, fits assuming a polarisation along the[100] and [010] directions failed. We co...
Epitaxial films of SrMnO3 and bilayers of SrMnO3 / La0.67Sr0.33MnO3 have been deposited by pulsed laser deposition on different substrates, namely LaAlO3 (001), (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) and SrTiO3 (001), allowing us to perform an exhaustive study of the dependence of antiferromagnetic order and exchange bias field on epitaxial strain. The Néel temperatures (TN ) of the SrMnO3 films have been determined by low energy muon spin spectroscopy. In agreement with theoretical predictions, TN is reduced as the epitaxial strain increases. From the comparison with first-principle calculations, a crossover from G-type to C-type antiferromagnetic orders is proposed at a critical tensile strain of around 1.6 ± 0.1 %. The exchange bias (coercive) field, obtained for the bilayers, increases (decreases) by increasing the epitaxial strain in the SrMnO3 layer, following an exponential dependence with temperature. Our experimental results can be explained by the existence of a spin-glass (SG) state at the interface between the SrMnO3 and La0.67Sr0.33MnO3 films. This SG state is due to the competition between the different exchange interactions present in the bilayer and favored by increasing the strain in SrMnO3 layer.
Engineering defects and strains in oxides provides a promising route for the quest of thin film materials with coexisting ferroic orders, multiferroics, with efficient magnetoelectric coupling at room temperature. Precise control of the strain gradient would enable custom tailoring of the multiferroic properties, but presently remains challenging. Here we explore the existence of a polar-graded state in epitaxially-strained antiferromagnetic SrMnO 3 thin films, whose polar nature was predicted theoretically, and recently demonstrated experimentally. By means of aberration-corrected scanning transmission electron microscopy we map the polar rotation of the ferroelectric polarization at atomic resolution, both far from and near the domain walls and find flexoelectricity resulting from vertical strain gradients. The origin of this particular strain state is a gradual distribution of oxygen vacancies across the film thickness, according to electron energy loss spectroscopy. Herein we present a chemistry-mediated route to induce polar rotations in oxygen-deficient multiferroic films, resulting in flexoelectric polar rotations and with potentially enhanced piezoelectricity. KEYWORDS: Multiferroics, ferroelectricity, flexoelectricity, aberration-corrected STEM, domain walls. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 4 TEXT Multiferroic materials have attracted great interest recently because of their intriguing fundamental physics and the wide range of potential applications such as transducers and information storage [1][2][3] . Of particular technological impact is the search for materials showing efficient coupling between ferromagnetic and ferroelectric orders that persist at room temperature. Manganese-based perovskite oxides AMnO 3 , A being an alkaline-earth cation, are particularly promising for this purpose; theoretical calculations reveal the onset of a ferroelectric ground state with strong magnetoelectric coupling since the spontaneous polarization is expected to be driven by the off-centering of the magnetic Mn 4+ ion 4,5 . The ferroelectric instability is predicted to increase by expansion of the lattice and, in turn, strain-induced ferroelectricity was experimentally demonstrated in Ba-substituted SrMnO 3 single crystals, in which chemical expansion of the crystal lattice is caused by partially replacing Sr with larger Ba ions 6 .Alternatively, strains can be induced into films through the use of epitaxial growth and can be utilized to modify the ferroelectric film properties by an adequate choice of the substrate 7-9 . In particular, strain-engineering of multiferroism has opened a path for the e...
A novel mechanism of ferroelectricity driven by off-centering magnetic Mn(4+) ions was proposed in (Sr1-xBax)MnO3, in its ideal perovskite phase, which yields enormous expectations in the search for strong magnetoelectric materials. Still, the desired perovskite phase has never been stabilized in thin films due to its extremely metastable character. Here, we report on a thorough study of the perovskite phase stabilization of (Sr1-xBax)MnO3 thin films, 0.2 ≤ x ≤ 0.5, grown by pulsed laser deposition onto (001)-oriented perovskite substrates. X-ray diffraction measurements and scanning transmission electron microscopy reveal that, under appropriate deposition conditions, the perovskite phase is fully stabilized over the nonferroelectric hexagonal phase, despite the latter being increasingly favored on increasing Ba-content. Moreover, we have managed to grow epitaxial coherent cube-on-cube (Sr1-xBax)MnO3 films upon strains ranging from 0% to 4%. Our results become a milestone in further studying perovskite (Sr1-xBax)MnO3 thin films and pave the way for tailoring ferroic and magnetoelectric properties either by strain engineering or Ba-doping.
In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.