The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time [1][2][3][4][5][6][7][8][9][10]. The recent discovery of superconductivity in doped infinite-layer nickelates RNiO2 (R = rare-earth element) [11,12] further strengthens these efforts. With a crystal structure similar to the infinite-layer cupratestransition metal oxide layers separated by a rare-earth spacer layerformal valence counting suggests that these materials have monovalent Ni 1+ cations with the same 3d electron count as Cu 2+ in the cuprates. Here, we use x-ray spectroscopy in concert with density functional theory to show that the electronic structure of RNiO2 (R = La, Nd), while similar to the cuprates, includes significant distinctions. Unlike cuprates with insulating spacer layers between the CuO2 planes, the rare-earth spacer layer in the infinite-layer nickelate supports a weaklyinteracting three-dimensional 5d metallic state. This three-dimensional metallic state hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx 2 -y 2 symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare earth intermetallics [13-15], well-known for heavy Fermion behavior, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy Fermion compounds. This unique Kondo-or Anderson-lattice-like "oxide-intermetallic" replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.While the mechanism of superconductivity in the cuprates remains a subject of intense research, early on it was suggested that the conditions required for realizing high Tc superconductivity are rooted in the physics of a two-dimensional electron system subject to strong local repulsion [16,17]. This describes the Mott (charge-transfer) insulators in the stoichiometric parent compounds, characterized by spin ½ Heisenberg antiferromagnetism, from which superconductivity emerges upon doping. A long-standing question regards whether these "cuprate-Mott" conditions can be realized in other oxides; and extensive efforts to synthesize and engineer nickel oxides (nickelates) have promised such a realization [1-10]. Infinite-layer NdNiO2 became the first such nickelate superconductor following the recent discovery of superconductivity in Srdoped samples [11]. The undoped parent compound, produced by removing the apical oxygen atoms from the perovskite nickelate NdNiO3 using a metal hydride-based soft chemistry reduction process [10,[18][19][20], appears to be a close sibling of the cuprates-it is isostructural to the infinitelayer cuprates with monovalent Ni 1+ cations and possesses the same 3d 9 electron count as that of Cu 2+ cations in undoped cuprates. Yet, as we will reveal, the electronic structure of the undoped RNiO2 (R = La and Nd) remains distinct from the Mott, or charge-transfer, compounds of undoped cuprates, and even...
The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high-resolution oxygen K-edge resonant inelastic X-ray scattering study of the antiferromagnetic Mott insulating state of Ca2RuO4. A set of lowenergy (∼80 and 400 meV) and high-energy (∼ 1.3 and 2.2 eV) excitations are reported that show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modelling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveil the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by the Hund's coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca2RuO4.Introduction. Spin-orbit coupling (SOC) is a central thread in the search for novel quantum material physics [1]. A particularly promising avenue is the combination of SOC and strong electron correlations in multiorbital systems. This scenario is realized in heavy transition metal oxides composed of 4d and 5d elements. Iridium-oxides (iridates) such as Sr 2 IrO 4 are prime examples of systems where SOC plays a defining role in shaping the Mott insulating ground state [2]. In fact, spin-orbit entanglement essentially outplays the effectiveness of the usually influential crystal field δ. Of equal interest is the complex regime where SOC and crystal field energy scales are comparable. Here Ca 2 RuO 4 is a topical material that displays a wealth of physical properties. A record high non-superconducting diamagnetic response has, for example, been reported recently [3]. Superconductivity emerges in strained films [4] or upon application of hydrostatic pressure to bulk crystals [5]. Neutron and Raman scattering experiments have demonstrated both phase and amplitude spin-excitation modes consistent with the existence of a spin-orbit exciton [6][7][8]. Moreover, measurements of the paramagnetic insulating band structure [9] were interpreted in favor of an orbitally differentiated band-Mott insulating ground state [10,11]. This rich phenomenology of Ca 2 RuO 4 is a manifestation of the interplay between multiple energy scales, specifically, the Coulomb interaction U , the Hund's coupling J H , the crystal field splitting δ and SOC λ. In particular, a tendency towards an orbital selective Mott state is expected to be driven by the Hund's coupling [12]. Furthermore, the band-Mott scenario is triggered by a
In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling.
The transition temperature Tc of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La2−xSrxCuO4 thin films, such substrates are sub-optimal and the highest Tc is instead obtained using LaSrAlO4. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in Tc and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La2CuO4 thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest Tc under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.
Scanning tunneling microscopy visualizations of quasiparticle interference (QPI) enable powerful insights into the k -space properties of superconducting, topological, Rashba and other exotic electronic phases, but their reliance on impurities acting as scattering centers is rarely scrutinized.Here we investigate QPI at the vacuum-cleaved (001) surface of the Dirac semimetal ZrSiS. We find that interference patterns around impurities located on the Zr and S lattice sites appear very different, and can be ascribed to selective scattering of different sub-sets of the predominantly Zr 4d-derived band structure, namely the m = 0 and m = ±1 components. We show that the selectivity of scattering channels requires an explanation beyond the different bands' orbital characteristics and their respective charge density distributions over Zr and S lattices sites. Importantly, this result shows that the usual assumption of generic scattering centers allowing observations of quasiparticle interference to shed light indiscriminately and isotropically upon the q-space of scattering events does not hold, and that the scope and interpretation of QPI observations can therefore be be strongly contingent on the material defect chemistry. This finding promises to spur new investigations into the quasiparticle scattering process itself, to inform future interpretations of quasiparticle interference observations, and ultimately to aid the understanding and engineering of quantum electronic transport properties.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.