Here we used organic composition and stable isotopic analysis to evaluate the effects of drainage and restoration at an ombrotrophic peatland, to assess whether rewetting of blanket bogs will reverse degradation. The organic composition of the peat and the isotopic fractionation between the solid (peat), liquid (pore water) and gas (soil gas) phases on actively accumulating, degrading and restored locations are compared. Fourier Transform Infrared Spectroscopy (FTIR) analysis of the organic material has shown a high level of humification (low decomposition) in the active peat. Stable isotope analysis in the solid, liquid and gas phases has corresponded with this and indicated that the active location is enriched in C in the solid and gas phases,N in the solid phase, O in the liquid and gas phases and D in the liquid phase, suggesting a closed system with limited isotopic fractionation and thus limited water movement and decomposition. The degrading location has a lower level of humification, and is depleted inC in the solid phase due to ingression of vascular plants. The restored location has high humification and enrichment of C andN in the solid phase, and D in the liquid phase suggesting increased microbial activity. C andO in the gas phase and O in the liquid phase are depleted, as a result of microbial mediated gas production and rewetting. FTIR analysis has also indicated a subsurface zone of increased decomposition between the acrotelm and catotelm in both the active and degrading peat. This is due to a stable water table and is not present within the restored location, which we attribute to water table fluctuation associated with rewetting. This zone of increased decomposition adds to the complexity of blanket bog peatlands and the assumption that all systems can be generalized under one conceptual model.
We compare a suite of Polycyclic Aromatic Hydrocarbons (Parent PAHs) in soils and air across an urban area (Belfast UK). Isomeric PAH ratios suggest that soil PAHs are mainly from a combustion source. Fugacity modelling across a range of soil temperatures predicts that four ring and larger PAHs from pyrene to indeno[1,2,3–cd]pyrene all partition strongly (>98%) to the soil compartment. This modelling also implies that these PAHs do not experience losses through partitioning to other phases (air, water) due to soil temperature effects. Such modelling may help in understanding the overall contaminant distribution in soils. The air and soil data together with modelling suggests that care must be taken when considering isomeric ratios of compounds with mass lighter than 178 (i.e. phenanthrene and anthracene) in the soil phase. Comparison of duplicate and replicate samples suggest that field sampling of duplicates dominates uncertainty and validated methodologies for selection of field duplicates and lab splitting are required. As the urban soil four ring PAHs are at equilibrium in the soil phase, and have characteristic ratios that are dominated by a combustion source that is a single controlling factor over spatial distribution, methods that calculate background concentrations can be compared.
Here we combine the use of geo-electrical techniques with geochemical analysis of the solid and liquid phase to determine subsurface properties and general peatland health. Active, degrading and restored peat locations were analysed from the same blanket bog site (ensuring they were under the same environmental conditions, such as rainfall and temperature) at the Garron Plateau, Northern Ireland. A normalized chargeability (ratio of resistivity (inverse of conductivity) and chargeability) profile was compared with organic composition analysis of the solid and liquid phases from active, degrading and restored locations. Results show that the degrading location is undergoing high rates of decomposition and loss of organic matter into the interstitial water, whereas the opposite is true for the active location. The restored peat is showing low rates of decomposition however has a high concentration of organic material in the porewater, primarily composing long chain aliphatic compounds, sourced from vascular plants. The ingression of vascular plants permits the diffusion of oxygen via roots into the subsurface and supports the oxidation of phenols by phenol oxidase, which produces phenoxy radicals and quinones (CO double bonds). This production of conjugated quinones, which are characterized by a CO double bond, in the aerated degrading and restored locations, increase the polarity, cation exchange capacity, and the normalized chargeability of the peat. This higher chargeability is not evident in the active peat due to decreased aerobic decomposition and a domination of sphagnum mosses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.