The world’s oceans are warming at an unprecedented rate, causing dramatic changes to coastal marine systems, especially coral reefs. We used three complementary ocean temperature databases (HadISST, Pathfinder, and OISST) to quantify change in thermal characteristics of Caribbean coral reefs over the last 150 years (1871–2020). These sea surface temperature (SST) databases included in situ and satellite-derived measurements at multiple spatial resolutions. We also compiled a Caribbean coral reef database identifying 5,326 unique reefs across the region. We found that Caribbean reefs have been warming for at least a century. Regionally reef warming began in 1915, and for four of the eight Caribbean ecoregions we assessed, significant warming was detected for the latter half of the nineteenth century. Following the global mid-twentieth century stasis, warming resumed on Caribbean reefs in the early 1980s in some ecoregions and in the 1990s for others. On average, Caribbean reefs warmed by 0.18°C per decade during this period, ranging from 0.17°C per decade on Bahamian reefs (since 1988) to 0.26°C per decade on reefs within the Southern and Eastern Caribbean ecoregions (since 1981 and 1984, respectively). If this linear rate of warming continues, these already threatened ecosystems would warm by an additional ~1.5°C on average by 2100. We also found that marine heatwave (MHW) events are increasing in both frequency and duration across the Caribbean. Caribbean coral reefs now experience on average 5 MHW events annually, compared to 1 per year in the early 1980s, with recent events lasting on average 14 days. These changes in the thermal environment, in addition to other stressors including fishing and pollution, have caused a dramatic shift in the composition and functioning of Caribbean coral reef ecosystems.
Disease, storms, ocean warming, and pollution have caused the mass mortality of reef-building corals across the Caribbean over the last four decades. Subsequently, stony corals have been replaced by macroalgae, bacterial mats, and invertebrates including soft corals and sponges, causing changes to the functioning of Caribbean reef ecosystems. Here we describe changes in the absolute cover of benthic reef taxa, including corals, gorgonians, sponges, and algae, at 15 fore-reef sites (12–15m depth) across the Belizean Barrier Reef (BBR) from 1997 to 2016. We also tested whether Marine Protected Areas (MPAs), in which fishing was prohibited but likely still occurred, mitigated these changes. Additionally, we determined whether ocean-temperature anomalies (measured via satellite) or local human impacts (estimated using the Human Influence Index, HII) were related to changes in benthic community structure. We observed a reduction in the cover of reef-building corals, including the long-lived, massive corals Orbicella spp. (from 13 to 2%), and an increase in fleshy and corticated macroalgae across most sites. These and other changes to the benthic communities were unaffected by local protection. The covers of hard-coral taxa, including Acropora spp., Montastraea cavernosa, Orbicella spp., and Porites spp., were negatively related to the frequency of ocean-temperature anomalies. Only gorgonian cover was related, negatively, to our metric of the magnitude of local impacts (HII). Our results suggest that benthic communities along the BBR have experienced disturbances that are beyond the capacity of the current management structure to mitigate. We recommend that managers devote greater resources and capacity to enforcing and expanding existing marine protected areas and to mitigating local stressors, and most importantly, that government, industry, and the public act immediately to reduce global carbon emissions.
Context Coral reef resilience is the product of multiple interacting processes that occur across various interacting scales. This complexity presents challenges for identifying solutions to the ongoing worldwide decline of coral reef ecosystems that are threatened by both local and global human stressors. Objectives We highlight how coral reef resilience is studied at spatial, temporal, and functional scales, and explore emerging technologies that are bringing new insights to our understanding of reef resilience. We then provide a framework for integrating insights across scales by using new and existing technological and analytical tools. We also discuss the implications of scale on both the ecological processes that lead to declines of reefs, and how we study those mechanisms. Methods To illustrate, we present a case study from Kāneʻohe Bay, Hawaiʻi, USA, linking remotely sensed hyperspectral imagery to within-colony symbiont communities that show differential responses to stress. Results In doing so, we transform the scale at which we can study coral resilience from a few individuals to entire ecosystems. Conclusions Together, these perspectives guide best practices for designing management solutions that scale from individuals to ecosystems by integrating multiple levels of biological organization from cellular processes to global patterns of coral degradation and resilience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.