Classifying pixels according to color, and segmenting the respective areas, are necessary steps in any computer vision task that involves color images. The gap between human color perception, linguistic color terminology, and digital representation are the main challenges for developing methods that properly classify pixels based on color. To address these challenges, we propose a novel method combining geometric analysis, color theory, fuzzy color theory, and multi-label systems for the automatic classification of pixels into 12 conventional color categories, and the subsequent accurate description of each of the detected colors. This method presents a robust, unsupervised, and unbiased strategy for color naming, based on statistics and color theory. The proposed model, “ABANICCO” (AB ANgular Illustrative Classification of COlor), was evaluated through different experiments: its color detection, classification, and naming performance were assessed against the standardized ISCC–NBS color system; its usefulness for image segmentation was tested against state-of-the-art methods. This empirical evaluation provided evidence of ABANICCO’s accuracy in color analysis, showing how our proposed model offers a standardized, reliable, and understandable alternative for color naming that is recognizable by both humans and machines. Hence, ABANICCO can serve as a foundation for successfully addressing a myriad of challenges in various areas of computer vision, such as region characterization, histopathology analysis, fire detection, product quality prediction, object description, and hyperspectral imaging.
We present a novel method to assess the variations in protein expression and spatial heterogeneity of tumor biopsies with application in computational pathology. This was done using different antigen stains for each tissue section and proceeding with a complex image registration followed by a final step of color segmentation to detect the exact location of the proteins of interest. For proper assessment, the registration needs to be highly accurate for the careful study of the antigen patterns. However, accurate registration of histopathological images comes with three main problems: the high amount of artifacts due to the complex biopsy preparation, the size of the images, and the complexity of the local morphology. Our method manages to achieve an accurate registration of the tissue cuts and segmentation of the positive antigen areas.
In any computer vision task involving color images, a necessary step is classifying pixels according to color and segmenting the respective areas. However, the development of methods able to successfully complete this task has proven challenging, mainly due to the gap between human color perception, linguistic color terms, and digital representation. In this paper, we propose a novel method combining geometric analysis of color theory, fuzzy color spaces, and multi-label systems for the automatic classification of pixels according to 12 standard color categories (Green, Yellow, Light Orange, Deep Orange, Red, Pink, Purple, Ultramarine, Blue, Teal, Brown, and Neutral). Moreover, we present a robust, unsupervised, unbiased strategy for color naming based on statistics and color theory. ABANICCO was tested against the state of the art in color classification and with the standarized ISCC-NBS color system, providing accurate classification and a standard, easily understandable alternative for hue naming recognizable by humans and machines. We expect this solution to become the base to successfully tackle a myriad of problems in all fields of computer vision, such as region characterization, histopathology analysis, fire detection, product quality prediction, object description, and hyperspectral imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.