Snakebite is a medical emergency causing high mortality and morbidity in rural tropical communities that typically experience delayed access to unaffordable therapeutics. Viperid snakes are responsible for the majority of envenomings, but extensive interspecific variation in venom composition dictates that different antivenom treatments are used in different parts of the world, resulting in clinical and financial snakebite management challenges. Here, we show that a number of repurposed Phase 2-approved small molecules are capable of broadly neutralizing distinct viper venom bioactivities in vitro by inhibiting different enzymatic toxin families. Furthermore, using murine in vivo models of envenoming, we demonstrate that a single dose of a rationally-selected dual inhibitor combination consisting of marimastat and varespladib prevents murine lethality caused by venom from the most medically-important vipers of Africa, South Asia and Central America. Our findings support the translation of combinations of repurposed small molecule-based toxin inhibitors as broad-spectrum therapeutics for snakebite.
Convergent evolution provides insights into the selective drivers underlying evolutionary change. Snake venoms, with a direct genetic basis and clearly defined functional phenotype, provide a model system for exploring the repeated evolution of adaptations. While snakes use venom primarily for predation, and venom composition often reflects diet specificity, three lineages of cobras have independently evolved the ability to spit venom at adversaries. Using gene, protein, and functional analyses, we show that the three spitting lineages possess venoms characterized by an up-regulation of phospholipase A2 (PLA2) toxins, which potentiate the action of preexisting venom cytotoxins to activate mammalian sensory neurons and cause enhanced pain. These repeated independent changes provide a fascinating example of convergent evolution across multiple phenotypic levels driven by selection for defense.
Snakebite envenoming causes 138,000 deaths annually, and ~400,000 victims are left with permanent disabilities. Envenoming by saw-scaled vipers (Viperidae: Echis) leads to systemic hemorrhage and coagulopathy and represents a major cause of snakebite mortality and morbidity in Africa and Asia. The only specific treatment for snakebite, antivenom, has poor specificity and low affordability and must be administered in clinical settings because of its intravenous delivery and high rates of adverse reactions. This requirement results in major treatment delays in resource-poor regions and substantially affects patient outcomes after envenoming. Here, we investigated the value of metal ion chelators as prehospital therapeutics for snakebite. Among the tested chelators, dimercaprol (British anti-Lewisite) and its derivative 2,3-dimercapto-1-propanesulfonic acid (DMPS) were found to potently antagonize the activity of Zn2+-dependent snake venom metalloproteinases in vitro. Moreover, DMPS prolonged or conferred complete survival in murine preclinical models of envenoming against a variety of saw-scaled viper venoms. DMPS also considerably extended survival in a “challenge and treat” model, where drug administration was delayed after venom injection and the oral administration of this chelator provided partial protection against envenoming. Last, the potential clinical scenario of early oral DMPS therapy combined with a delayed, intravenous dose of conventional antivenom provided prolonged protection against the lethal effects of envenoming in vivo. Our findings demonstrate that the safe and affordable repurposed metal chelator DMPS can effectively neutralize saw-scaled viper venoms in vitro and in vivo and highlight the promise of this drug as an early, prehospital, therapeutic intervention for hemotoxic snakebite envenoming.
The mambas (genus Dendroaspis) comprise five especially notorious medically important venomous snakes endemic to sub-Saharan Africa. Their highly potent venoms comprise a high diversity of pharmacologically active peptides, including extremely rapid-acting neurotoxins. Previous studies on mamba venoms have focused on the biochemical and pharmacological characterisation of their most relevant toxins to rationalize the common neurological and neuromuscular symptoms of envenomings caused by these species, but there has been little work on overall venom composition or comparisons between them. Only very recently an overview of the composition of the venom of two Dendroaspis species, D. angusticeps and D. polylepis, has been unveiled through venomics approaches. Here we present the first genus-wide transcriptomic-proteomic analysis of mamba venom composition. The transcriptomic analyses described in this paper have contributed 29 (D. polylepis), 23 (D. angusticeps), 40 (D. viridis), 25 (D. j. jamesoni) and 21 (D. j. kaimosae), novel full-length toxin sequences to the non-redundant Dendroaspis sequence database. The mamba genus-wide venomic analysis demonstrated that major D. polylepis venom components are Kunitz-fold family toxins. This feature is unique in relation to the relatively conserved three-finger toxin (3FTx)-dominated venom compositions of the green mambas. Venom variation was interpreted in the context of dietary variation due to the divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas. Additionally, the degree of cross-reactivity conservation of mamba venoms was assessed by antivenomics against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview to infer which available antivenoms may be capable of neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the pharmacological profiles of mamba venoms at locus resolution. This understanding will contribute to the generation of a safer and more efficacious pan-Dendroaspis therapeutic antivenom against any mamba envenomation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.