Bioprinting is a recent technology in tissue engineering used for the design of porous constructs through layer-by-layer deposition of cell-laden material. This technology would benefit from new biomaterials that can fulfill specific requirements for the fabrication of well-defined 3D constructs, such as the preservation of cell viability and adequate mechanical properties. We evaluated the suitability of a novel semi-interpenetrating network (semi-IPN), based on hyaluronic acid and hydroxyethyl-methacrylate-derivatized dextran (dex-HEMA), to form 3D hydrogel bioprinted constructs. The rheological properties of the solutions allowed proper handling during bioprinting, whereas photopolymerization led to stable constructs of which their mechanical properties matched the wide range of mechanical strengths of natural tissues. Importantly, excellent viability was observed for encapsulated chondrocytes. The results demonstrate the suitability of hyaluronic acid/dex-HEMA semi-IPNs to manufacture bioprinted constructs for tissue engineering.
The importance of Interpenetrating Polymer Networks (IPNs) in biomedical and pharmaceutical fields is continuously growing because of their mechanical and drug carrier tailoring opportunities. This paper deals with the physico-chemical characterization of an IPN hydrogel based on calcium-alginate and a dextran methacrylate derivative. The attention is focused on the determination of IPN mesh size distribution. For this purpose, two different approaches were applied, namely using a combination of rheological and low field NMR characterization, and cryoporosimetry. Appropriate mathematical models were developed for the interpretation of the experimental data. Both approaches led to a monomodal mesh size distribution spanning the same size range but characterized by different mean values (25 nm, Rheo-NMR; 44 nm, cryoporosimetry). This is probably due to mesh widening upon water freezing. Moreover, release experiments of a model protein -myoglobin -from the IPN were performed and the obtained data were combined with the results of the two above mentioned approaches. Release tests yielded an estimation of the mean mesh size that is closer to that obtained according to the rheology-NMR approach than that resulting from cryoporosimetry measurements.
In situ forming hydrogels, which allow for the modulation of physico-chemical properties, and in which cell response can be tailored, are providing new opportunities for biomedical applications. Here, we describe interpenetrating polymer networks (IPNs) based on a physical network of calcium alginate (Alg-Ca), interpenetrated with a chemical one based on hydroxyethyl-methacrylate-derivatized dextran (dex-HEMA). IPNs with different concentration and degree of substitution of dex-HEMA were characterized and evaluated for protein release as well as for the behavior of embedded cells. The results demonstrated that the properties of the semi-IPNs, which are obtained by dissolution of dex-HEMA chains into the Alg-Ca hydrogels, would allow for injection of these hydrogels. Degradation times of the IPNs after photocross-linking could be tailored from 15 to 180 days by the concentration and the degree of substitution of dex-HEMA. Further, after an initial burst release, bovine serum albumin was gradually released from the IPNs over approximately 15 days. Encapsulation of expanded chondrocytes in the IPNs revealed that cells remained viable and, depending on the composition, were able to redifferentiate, as was demonstrated by the deposition of collagen type II. These results demonstrate that these IPNs are attractive materials for pharmaceutical and biomedical applications due to their tailorable mechanical and degradation characteristics, their release kinetics and biocompatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.