Drug resistance of cancer cells is recognized as the primary cause of failure of chemotherapeutic treatment in most human cancers. Growing evidences support the idea that deregulated cellular metabolism is linked to such resistance. Indeed, both components of the glycolytic and mitochondrial pathways are involved in altered metabolism linked to chemoresistance of several cancers. Here we investigated the drug-induced metabolic adaptations able to confer advantages to docetaxel resistant prostate cancer (PCa) cells. We found that docetaxel-resistant PC3 cells (PC3-DR) acquire a pro-invasive behavior undergoing epithelial-to-mesenchymal-transition (EMT) and a decrease of both intracellular ROS and cell growth. Metabolic analyses revealed that PC3-DR cells have a more efficient respiratory phenotype than sensitive cells, involving utilization of glucose, glutamine and lactate by the mitochondrial oxidative phosphorylation (OXPHOS). Consequently, targeting mitochondrial complex I by metformin administration, impairs proliferation and invasiveness of PC3-DR cells without effects on parental cells. Furthermore, stromal fibroblasts, which cause a “reverse Warburg” phenotype in PCa cells, reduce docetaxel toxicity in both sensitive and resistant PCa cells. However, re-expression of miR-205, a microRNA strongly down-regulated in EMT and associated to docetaxel resistance, is able to shift OXPHOS to a Warburg metabolism, thereby resulting in an elevated docetaxel toxicity in PCa cells. Taken together, these findings suggest that resistance to docetaxel induces a shift from Warburg to OXPHOS, mandatory for conferring a survival advantage to resistant cells, suggesting that impairing such metabolic reprogramming could be a successful therapeutic approach.
There is growing evidence to suggest that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) are key players in tumour stroma. Here, we investigated the cross‐talk between BM‐MSCs and osteosarcoma (OS) cells. We revealed a strong tropism of BM‐MSCs towards these tumour cells and identified monocyte chemoattractant protein (MCP)‐1, growth‐regulated oncogene (GRO)‐α and transforming growth factor (TGF)‐β1 as pivotal factors for BM‐MSC chemotaxis. Once in contact with OS cells, BM‐MSCs trans‐differentiate into cancer‐associated fibroblasts, further increasing MCP‐1, GRO‐α, interleukin (IL)‐6 and IL‐8 levels in the tumour microenvironment. These cytokines promote mesenchymal to amoeboid transition (MAT), driven by activation of the small GTPase RhoA, in OS cells, as illustrated by the in vitro assay and live imaging. The outcome is a significant increase of aggressiveness in OS cells in terms of motility, invasiveness and transendothelial migration. In keeping with their enhanced transendothelial migration abilities, OS cells stimulated by BM‐MSCs also sustain migration, invasion and formation of the in vitro capillary network of endothelial cells. Thus, BM‐MSC recruitment to the OS site and the consequent cytokine‐induced MAT are crucial events in OS malignancy.
Angiopoietin-like (ANGPTL) proteins are secreted proteins showing structural similarity to members of the angiopoietin family. Some ANGPTL proteins possess pleiotropic activities, being involved in cancer lipid, glucose energy metabolisms, and angiogenesis. ANGPTL7 is the less characterized member of the family whose functional role is only marginally known. In this study, we provide experimental evidences that ANGPTL7 is over-expressed in different human cancers. To understand the role played by ANGPTL7 in tumor biology, we asked whether ANGPTL7 is endogenously expressed by malignant cells or in response to environmental stimuli. We found that ANGPTL7 is marginally expressed under standard growth condition while it is specifically up-regulated by hypoxia. Interestingly, the protein is secreted and partially associated with the exosomal fraction, suggesting that it could be found in the systemic circulation of oncologic patients and act in an endocrine way. Moreover, we found that ANGPTL7 exerts a pro-angiogenetic effect on human differentiated endothelial cells by stimulating their proliferation, motility, invasiveness, and capability to form capillary-like networks while it does not stimulate progenitor endothelial cells. Finally, we showed that ANGPTL7 promotes vascularization in vivo in the mouse Matrigel sponge assay, thereby accrediting this molecule as a pro-angiogenic factor.
Purpose Extracellular proteins are easily accessible, which presents a sub-proteome of molecular targets that have high diagnostic and therapeutic potential. Efforts have been made to catalogue the cardiac extracellular matridome and analyze the topology of identified proteins for the design of therapeutic targets. Although many bioinformatics tools have been developed to predict protein topology, topology has been experimentally validated for only a very small portion of membrane proteins. The aim of this study was to use a glycoproteomics and mass spectrometry approach to identify glycoproteins in the extracellular matridome of the infarcted LV and provide experimental evidence for topological determination. Experimental design Glycoproteomics analysis was performed on eight biological replicates of day 7 post-MI samples from wild type mice using solid-phase extraction of glycopeptides, followed by mass spectrometric identification of N-linked glycosylation sites for topology assessment. Results We identified hundreds of glycoproteins and the identified N-glycosylation sites provide novel information on the correct topology for membrane proteins present in the infarct setting. Conclusions and clinical relevance Our data provides the foundation for future studies of the LV infarct extracellular matridome, which may facilitate the discovery of drug targets and biomarkers.
Endo-, phyto- and synthetic cannabinoids have been proposed as promising anti-cancer agents able to impair cancer cells’ behavior without affecting their non-transformed counterparts. However, cancer outcome depends not only on cancer cells’ activity, but also on the stromal cells, which coevolve with cancer cells to sustain tumor progression. Here, we show for the first time that cannabinoid treatment impairs the activation and the reactivity of cancer-associated fibroblasts (CAFs), the most represented stromal component of prostate tumor microenvironment. Using prostate cancer-derived CAFs, we demonstrated that WIN 55-212.2 mesylate, a synthetic full agonist of cannabinoid receptors (CBs) 1 and 2, downregulates α-smooth muscle actin and matrix metalloprotease-2 expression, and it inhibits CAF migration, essential features to ensure the activated and reactive CAF phenotype. Furthermore, by impairing stromal reactivity, WIN 55-212.2 mesylate also negatively affects CAF-mediated cancer cells’ invasiveness. Using selective antagonists of CBs, we proved that CAFs response to WIN 55-212.2 mesylate is mainly mediated by CB2. Finally, we suggest that endocannabinoids self-sustain both prostate tumor cells migration and CAFs phenotype by an autocrine loop. Overall, our data strongly support the use of cannabinoids as anti-tumor agents in prostate cancer, since they are able to simultaneously strike both cancer and stromal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.