The dynamic interplay between cancer and host immune system often affects the process of myelopoiesis. As a consequence, tumor-derived factors sustain the accumulation and functional differentiation of myeloid cells, including myeloid-derived suppressor cells (MDSCs), which can interfere with T cell-mediated responses. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor-dependent, it is important not only to determine the presence of all MDSC subsets in each cancer patient, but also which MDSC subsets have clinical relevance in each tumor environment. In this review, we describe the differences between MDSC populations expanded within different tumor contexts and evaluate the prognostic significance of MDSC expansion in peripheral blood and within tumor masses of neoplastic patients.
We recently demonstrated that human BM cells can be treated in vitro with defined growth factors to induce the rapid generation of myeloid-derived suppressor cells (MDSCs), hereafter defined as BM-MDSCs. Indeed, combination of G-CSF ؉ GM-CSF led to the development of a heterogeneous mixture of immature myeloid cells ranging from myeloblasts to band cells that were able to suppress alloantigen-and mitogen-stimulated T lymphocytes. Here, we further investigate the mechanism of suppression and define the cell subset that is fully responsible for BM-MDSC-mediated immune suppression. This population, which displays the structure and markers of promyelocytes, is however distinct from physiologic promyelocytes that, instead, are devoid of immuosuppressive function.
Background. COVID-19 patients develop pneumonia generally associated to lymphopenia and severe inflammatory response due to uncontrolled cytokine release. These mediators are transcriptionally regulated by the JAK-STAT signaling pathways, which can be disabled by small molecules. Methods. A group of subjects (n = 20) was treated with baricitinib according to an offlabel use of the drug. The study was designed as an observational longitudinal trial and approved by the local ethical committee. The patients were treated with baricitinib 4 mg twice daily for 2 days, followed by 4 mg per day for the remaining 7 days. Changes in the immune phenotype and expression of pSTAT3 in blood cells were evaluated and correlated with serum-derived cytokine levels and antibodies anti-SARS-CoV-2. In a single treated patient, we evaluated also the alteration of myeloid cell functional activity. Results. We provided evidence that baricitinib-treated patients have a marked reduction in serum levels of interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-a, a rapid recovery in circulating T and B cell frequencies, and increased antibody production against SARS-CoV-2 spike protein, which were clinically associated with a reduction in oxygen flow need and progressive increase in the P/F. Conclusion. These data suggest that Baricitinib prevented the progression towards a severe/extreme form of the viral disease by modulating the patients' immune landscape and these changes were associated with a safer and favorable clinical outcome of patients with COVID-19 pneumonia. Trial registration. The ClinicalTrials.gov identifier of this project is protocol NCT04438629.
Background Systemic and local immune suppression plays a significant role in glioma progression. Glioma microenvironment contains both brain-resident microglial cells (MG) and bone marrow-derived macrophages (BMDM), but the study of their functional and immune regulatory activity has been hampered until now by the lack of markers allowing a proper identification and isolation to collect pure populations. Methods Myeloid and lymphoid infiltrate were characterized in grade II, III and IV gliomas by multicolor flow cytometry, along with the composition of the cell subsets of circulating myeloid cells. Macrophages were sorted and tested for their immunosuppressive ability. Moreover, following preoperative administration of 5-aminolevulinic acid to patients, distinct areas of tumor lesion were surgically removed and analyzed, based on protoporphyrin IX fluorescence emission. Results The immune microenvironment of grade II to grade IV gliomas contains a large proportion of myeloid cells and a small proportion of lymphocytes expressing markers of dysfunctional activity. BMDM and resident MG cells were characterized through a combination of markers, thus permitting their geographical identification in the lesions, their sorting and subsequent analysis of the functional characteristics. The infiltration by BMDM reached the highest percentages in grade IV gliomas, and it increased from the periphery to the center of the lesion, where it exerted a strong immunosuppression that was, instead, absent in the marginal area. By contrast, MG showed little or no suppression. Functional differences, such as iron metabolism and phagocytosis, characterized resident versus blood-derived macrophages. Significant alterations in circulating monocytes were present in grade IV patients, correlating with accumulation of tumor macrophages. Conclusions Grade IV gliomas have an alteration in both circulating and tumor-associated myeloid cells and, differently from grade II and III gliomas, show a significant presence of blood-derived, immune suppressive macrophages. BMDM and MG have different functional properties. Electronic supplementary material The online version of this article (10.1186/s40425-019-0536-x) contains supplementary material, which is available to authorized users.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with an overall 5-year survival rate of less than 8%. New evidence indicates that PDAC cells release pro-inflammatory metabolites that induce a marked alteration of normal hematopoiesis, favoring the expansion and accumulation of myeloid-derived suppressor cells (MDSCs). We report here that PDAC patients show increased levels of both circulating and tumor-infiltrating MDSC-like cells. Methods: The frequency of MDSC subsets in the peripheral blood was determined by flow cytometry in three independent cohorts of PDAC patients (total analyzed patients, n = 117). Frequency of circulating MDSCs was correlated with overall survival of PDAC patients. We also analyzed the frequency of tumor-infiltrating MDSC and the immune landscape in fresh biopsies. Purified myeloid cell subsets were tested in vitro for their T-cell suppressive capacity. Results: Correlation with clinical data revealed that MDSC frequency was significantly associated with a shorter patients' overall survival and metastatic disease. However, the immunosuppressive activity of purified MDSCs was detectable only in some patients and mainly limited to the monocytic subset. A transcriptome analysis of the immunosuppressive M-MDSCs highlighted a distinct gene signature in which STAT3 was crucial for monocyte reprogramming. Suppressive M-MDSCs can be characterized as circulating STAT3/arginase1-expressing CD14 + cells. Conclusion: MDSC analysis aids in defining the immune landscape of PDAC patients for a more appropriate diagnosis, stratification and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.