Brain and nervous system development in human infants during the first 1000 days (conception to two years of age) is critical, and compromised development during this time (such as from under nutrition or poverty) can have life-long effects on physical growth and cognitive function. Cortical mapping of cognitive function during infancy is poorly understood in resource-poor settings due to the lack of transportable and low-cost neuroimaging methods. Having established a signature cortical response to social versus non-social visual and auditory stimuli in infants from 4 to 6 months of age in the UK, here we apply this functional Near Infrared Spectroscopy (fNIRS) paradigm to investigate social responses in infants from the first postnatal days to the second year of life in two contrasting environments: rural Gambian and urban UK. Results reveal robust, localized, socially selective brain responses from 9 to 24 months of life to both the visual and auditory stimuli. In contrast at 0–2 months of age infants exhibit non-social auditory selectivity, an effect that persists until 4–8 months when we observe a transition to greater social stimulus selectivity. These findings reveal a robust developmental curve of cortical specialisation over the first two years of life.
Recent neuroimaging studies suggest that monolingual infants activate a left-lateralized frontotemporal brain network in response to spoken language, which is similar to the network involved in processing spoken and signed language in adulthood. However, it is unclear how brain activation to language is influenced by early experience in infancy. To address this question, we present functional near-infrared spectroscopy (fNIRS) data from 60 hearing infants (4 to 8 months of age): 19 monolingual infants exposed to English, 20 unimodal bilingual infants exposed to two spoken languages, and 21 bimodal bilingual infants exposed to English and British Sign Language (BSL). Across all infants, spoken language elicited activation in a bilateral brain network including the inferior frontal and posterior temporal areas, whereas sign language elicited activation in the right temporoparietal area. A significant difference in brain lateralization was observed between groups. Activation in the posterior temporal region was not lateralized in monolinguals and bimodal bilinguals, but right lateralized in response to both language modalities in unimodal bilinguals. This suggests that the experience of two spoken languages influences brain activation for sign language when experienced for the first time. Multivariate pattern analyses (MVPAs) could classify distributed patterns of activation within the left hemisphere for spoken and signed language in monolinguals (proportion correct = 0.68; p = 0.039) but not in unimodal or bimodal bilinguals. These results suggest that bilingual experience in infancy influences brain activation for language and that unimodal bilingual experience has greater impact on early brain lateralization than bimodal bilingual experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.