We have investigated the effects on Saccharomyces cerevisiae of a novel antitumour agent (FCE24517 or Tallimustine) which causes selective alkylations to adenines in the minor groove of DNA. Tallimustine, added to wild-type cells for short periods, reduced the growth rate and increased the percentage of budded cells and delayed the cell cycle in the late S + G2 + M phases. In the rad9 delta null mutant cells, Tallimustine treatment did not affect growth rate and the percentage of budded cells but greatly reduced cell viability compared to isogenic cells. Consistent with a role of RAD9 in inducing a transient delay in G2 phase which preserves cell viability, the potent cytotoxic effect of the drug on rad9 delta cells was alleviated by treatment with nocodazole. Tallimustine was also found to delay the resumption from G1 arrest of wild-type but not of rad9 delta cells. These data indicate that the effects of Tallimustine on cell cycle progression in yeast are mediated by the RAD9 gene product. From our data it appears that yeast could be a valuable model system to study the mode of action of this alkylating drug and of minor groove alkylators in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.