Cloud Manufacturing (CM) is a service oriented business model to share manufacturing capabilities and resources on a cloud platform. Manufacturing is under pressure to achieve cost and environmental impact reductions, as manufacturing becomes more integrated and complex. Cloud manufacturing offers a solution, as it is capable of making intelligent decisions to provide the most sustainable and robust manufacturing route available. Although CM research has progressed, a consensus is still lacking on the concepts within CM as well as applications and scope beyond discrete manufacturing.The aim of this paper is to demonstrate how CM offers a more sustainable manufacturing future to the industry as a whole, before focusing specifically on the application to process manufacturing (e.g. food, pharmaceuticals and chemicals). This paper details the definitions, characteristics, architectures and previous case studies on CM. From this, the fundamental aspects of the CM concept are identified, along with an analysis of how the concept has progressed. A new, comprehensive CM definition is formulated by combining key concepts drawn from previous definitions and emphasizes CM potential for sustainable manufacturing.Four key methods of how CM increases sustainability are identified: (1) collaborative design; (2) greater automation; (3) improved process resilience and (4) enhanced waste reduction, reuse and recovery. The first two key methods are common to both discrete and process manufacturing, however key methods (3) and ( 4) are more process manufacturing specific and application of CM for these has yet to be fully realised. Examples of how CM's characteristics may be utilised to solve various process manufacturing problems are presented to demonstrate the applications of CM to process manufacturing. Waste is an important consideration in manufacturing, with strong sustainability implications. The current focus has been on using CM for waste minimisation; however, process manufacturing offers waste as a resource (valorisation opportunities from diversifying co-products, reuse, recycle and energy recovery). Exploring CM's potential to characterise and evaluate alternative process routes for the valorisation of process manufacturing waste is considered for the first time. The specific limitations preventing CM adoption by process manufacturers are discussed. Finally, CM's place in the future of manufacturing is explored, including how it will interact with, and complement other emerging manufacturing technologies to deliver a circular economy and personalised products.
A dairy farm waste which include milk waste, unconverted feed and bedding, cow manure and cow slurry water have been applied as raw materials to produce renewable energy using a continuous flow membrane-less microbial fuel cell (MFC). The COD content decreased with 98% from 33,600 J/L to 558 J/L within 6 days by turning the organic content into electricity and hydrogen. The voltage generated reached a peak of 1.6136mV, which indicating that dairy farm waste can be an appropriate resource for MFC. The total energy of hydrogen gas was 38,338J/L on the sixth day, which suggesting that about 80% of the energy stored in the COD was transferred into hydrogen gas. The nitrogen content of the farm waste slurry also decreased 20% during the first 24 hours indicating that MFC can be used for nitrogen harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.